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Abstract

In the paper, a new approach to construction test for independence
of two-dimensional normally distributed random vectors is given
under the assumption that the ratio of the variances is known.
This test is uniformly better than the t-Student test. A comparison
of the power of these two tests is given. A behaviour of this test for
some ε-contamination of the original model is also shown. In the
general case when the variance ratio is unknown, an adaptive test is
presented. The equivalence between this test and the classical t-test for
independence of normal variables is shown. Moreover, the confidence
interval for correlation coefficient is given. The results follow from the
unified theory of testing hypotheses both for fixed effects and variance
components presented in papers [6] and [7].
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1 Introduction

The well known t-Student test for independence of normally distributed two
random variables is the most powerful unbiased test if the covariance
structure of this variables is completely unknown. However, under the
assumption that the variances of random variables are equal or if the ratio
of these variances is known it is possible to construct a more powerful test
than the t-Student one. This problem is well known and was solved by
Geisser [1], but the authors propose here another solution, which is
based on the new approach to testing hypothesis presented in [6] and
[7]. Moreover, using the simulation methods, the power functions of
classical t-Student test and the new one were compared. Throughout this
paper Fk,l stands for F -Snedecor distribution with k degrees of freedom
for the numerator and l degrees of freedom for the denominator. As usually
Fα,k,l stands for α-critical value of this distribution.

2 Test for independence of two random
variables

with equal variances

Suppose that y1, ..., yn, where yi = (y1i, y2i)′, are two-dimensional iid
random variables according to the normal distribution N(µ,Σ) with vector
of mean µ = (µ1, µ2)′ and the covariance matrix

Σ =

[
σ γ
γ kσ

]
.(1)

We assume that σ, γ and µ are unknown, while k is known. Note that
ρ = γ√

kσ
is the correlation coefficient and two hypotheses

H : ρ = 0 vs K : ρ > 0(2)

or

H : ρ = 0 vs K : ρ 6= 0(3)

are equivalent to

H : γ = 0 vs K : γ > 0(4)

or
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H : γ = 0 vs K : γ 6= 0,(5)

respectively. Define z = By, where y = (y11, ..., y1n, y21, ..., y2n)′, while

B = diag

{
1,

1√
k

}
⊗ In.

Now we can use an idea given in [6] and [7] for a construction of a test for
the above hypothesis on the basis of the best quadratic unbiased estimator
(BQUE) for γ. Note that the random vector z = (z11, ..., z1n, z21, ..., z2n)′ is
normally distributed N(µz, Σz) with the expected vector

µz = B(I2 ⊗ 1n)µ(6)

and the covariance matrix

Σz = B(Σ⊗ In)B =
(

γ√
k
(121

′
2 − I2) + σI2

)
⊗ In = γ1V + σI2n,(7)

where γ1 = γ√
k

and V = (121
′
2 − I2)⊗ In.

Here 1n, In and ⊗ stand for n× 1 vector of one’s, n×n identity matrix
and Kronecker symbol, respectively. Since of the projection matrix P =
I2⊗ 1

n1n1
′
n on space of expected values R(B(I2⊗ 1n)) commute with V and

since sp{V, I} is a Jordan algebra (quadratic subspace) we conclude that
sp{MV M, M} is also a quadratic subspace, where M = I−P . This in turn
implies that there exists BUE γ̂1 for γ1 of (see Lemma 3.1 in [9] and [10], cf
also [8]) and it is given by

γ̂1 =
1

2(n− 1)
z′Az =

1
2(n− 1)

(z′A+z − z′A−z),(8)

where A =

[
0 Mn

Mn 0

]
with Mn = In − 1

n1n1′n, while
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A+ =
1
2

[
Mn Mn

Mn Mn

]
and A− =

1
2

[
Mn −Mn

−Mn Mn

]
.

Note that the quadratic forms z′A+z and z′A−z can be expressed as follows

z′A+z =
1
2

n∑

i=1

[
y1i +

y2i√
k
−

(
y1· +

y2·√
k

)]2

(9)

and

z′A−z =
1
2

n∑

i=1

[
y1i − y2i√

k
−

(
y1· − y2·√

k

)]2

,(10)

where y1· and y2· are appropriate sample averages.

Remark 21. It is worthy of note that A is a tripotent matrix, i.e.
A3 = A and therefore we can obtain immediately its decomposition as
follows

A+ =
A2 + A

2
and A− =

A2 −A

2
.

Since A+A− = 0 and tr(A+) = tr(A−) = tr(Mn) = n−1, the ratio statistics

F =
z′A+z

z′A−z
(11)

under null hypotheses (4) (or (5)) has an F -Snedecor distribution with
n − 1 degrees of freedom both for the numerator and the denominator, i.e.
Fn−1,n−1 (see also Lemma 3.2 in [6]).
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We accept null hypotheses (4) at significance level α if

F < Fα,n−1,n−1(12)

and accept null hypotheses (5) if

F1−α/2,n−1,n−1 < F < Fα/2,n−1,n−1.(13)

Now we prove that F -tests (12) and (13) have optimal properties, i.e. they
are the most powerful unbiased tests.

Theorem 21. The F -test given by (12) and F -test given by (13) are the
most powerful unbiased tests for testing hypotheses (4) and (5), respectively.

Proof. To prove that statistics F given by (11) is F -distributed note that
u1i = z1i +z2i and u2i = z1i−z2i are independent with mean η1 = µ1+ 1√

k
µ2

and η2 = µ1− 1√
k
µ2, respectively. Moreover, random vectors ui = (u1i, u2i)′

are iid with the following covariance matrix

Σui =

[
2(σ + γ√

k
) 0

0 2(σ − γ√
k
)

]
.(14)

Thus the hypotheses H : γ = 0 vs K : γ > 0 or H : γ = 0 vs K : γ 6= 0 are
equivalent to the well known testing problems of equality of variances for
two samples with equal number of observation and thus the theorem follows
([5], 219).

Remark 22. The result presented in Theorem 2.1 can be obtained using
the invariance principle.

Note that the t-Student test is also unbiased. Thus, from the above theorem
we have the following

Corollary 21. Both one-sided test (12) and two-sided test (13), are more
powerful tests than one-sided and two-sided t-Student tests for hypotheses
(2) and (3), respectively.

In the next section, we compare these two tests and by simulation study we
show the behavior of the F -test.
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3 Comparison of power of classical t-test with
F -test

under equal and unequal variances

In this section, we compare power functions for the t-Student test with the
F -Snedecor test for different sample sizes (n = 3, 6, 10, 20) and

ρ =
γ√
kσ

, ρ ∈ (−1, 1).

Note that the power function for F -test with known k as in the original
model is calculated on the basis of F -distribution for each fixed ρ0 ∈ (−1, 1)
because the statistics

1− ρ0

1 + ρ0
F

is Fn−1,n−1 distributed (14), (see also [1]). Recall that the t-Student test is
based on statistics

t =
R√

1−R2

√
n− 2,(15)

where R is the sample correlation coefficient, and null hypothesis (2) is
rejected if t > tα,n−2, while the hypothesis (3) is rejected if |t| > tα/2,n−2.

For the small sizes of samples i.e. n < 10 and large |ρ| (see Figure
1-2) it is clearly seen that the F -test is much better than the t-Student test.
However, for n ≥ 10 the power functions for both tests almost coincide. On
the basis of study simulation we examine also the behavior of our test (in
the original model defined by (1) with the ratio k = 1), in the surroundings
(k − ε, k + ε), what corresponds to an ε-contaminated normal distribution.
By simulation studies we get the result showing that the power function of
the F -test given by (13) is a decreasing function of ε. From Figures 5 to
8 it follows that if the ratio of variances belongs to the interval (0.8, 1.25),
then the F -Snedecor test is still uniformly better than the t-Student test.
However, outside of this interval the F -test is even biased (see Figure
9,10). Similarly, it holds for one-sided tests. Computational step ∆ρ in
simulations is equal to 0.01. The number of samples for each fixed value
ρ = ρ0 is equal to 10000. For random numbers of normal distribution
we apply the ROU (ratio of uniforms method) generator proposed by
Kinderman and Monahan [4].



Tests of independence of normal random variables ... 239

• t-Student test (based on simulation)
F -test, k = 1

Figure 1. Comparison of power functions for n = 3.

• t-Student test (based on simulation)
F -test, k = 1

Figure 2. Comparison of power functions for n = 6.
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• t-Student test (based on simulation)
F -test, k = 1

Figure 3. Comparison of power functions for n = 10.

• t-Student test (based on simulation)
F -test, k = 1

Figure 4. Comparison of power functions for n = 20.
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• t-Student test (based on simulation)
F -test, k = 1

- - - - - - F -test (based on simulation), k = 0.8

Figure 5. Comparison of power functions for n = 3.

• t-Student test (based on simulation)
F -test, k = 1

- - - - - - F -test (based on simulation), k = 0.8

Figure 6. Comparison of power functions for n = 6.
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• t-Student test (based on simulation)
F -test, k = 1

- - - - - - F -test (based on simulation), k = 0.8

Figure 7. Comparison of power functions for n = 10.

• t-Student test (based on simulation)
F -test, k = 1

- - - - - - F -test (based on simulation), k = 0.8

Figure 8. Comparison of powerfunctions for n = 20.
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• t-Student test (based on simulation)
F -test, k = 1

- - - - - - F -test (based on simulation), k = 0.4

Figure 9. Comparison of power functions for n = 10.

• t-Student test (based on simulation)
F -test, k = 1

- - - - - - F -test (based on simulation), k = 0.1

Figure 10. Comparison of power functions for n = 10.
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4 Confidence interval for correlation coefficient
ρ

In this section we construct a confidence interval for the correlation
coefficient ρ. For this reason note that if the true value of covariance is
γ, then ρ = γ√

kσ
and if ρ = ρ0, then from (14) it follows that 1−ρ0

1+ρ0
F is

Fn−1,n−1 distributed. Now, similarly as for hypothesis (3) the acceptance
region of a level-α test for testing

H(ρ0) : ρ = ρ0 vs K(ρ0) : ρ 6= ρ0(16)

has the following form

1 + ρ0

1− ρ0
F1−α/2,n−1,n−1 < F <

1 + ρ0

1− ρ0
Fα/2,n−1,n−1.(17)

Thus, we have confidence interval for ρ given by
[
f−1
1 (F ) , f−1

2 (F )
]
, where

f1(ρ) =
1 + ρ

1− ρ
Fα

2
,n−1,n−1, f2 (ρ) =

1 + ρ

1− ρ
F1−α

2
,n−1,n−1

and F is given by (11), while f−1
1 and f−1

2 stand for the inverse functions
of f 1 and f2, respectively. It can be easily calculated that the lower bound
and upper bound are equal

f−1
1 (F ) =

F − Fα
2

,n−1,n−1

F + Fα
2

,n−1,n−1
, f−1

2 (F ) =
F − F1−α

2
,n−1,n−1

F + F1−α
2

,n−1,n−1
,

respectively.

The following Figure 11 illustrates the construction of the confidence
interval for ρ at confidence level 1 − α = 0.95. For the sample size n = 20
and for the value of test statistics F = 4.5 we calculate that the confidence
interval for ρ is [0.28035, 0.83847].
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Figure 11. The 95% confidence interval for ρ.

5 Adaptive test for independence in a bivariate
normal distribution

In a general case, when the variance ratio k is unknown, we suggest to put
in F -statistics given by (11) the ratio of sample variances i.e. s2

2

s2
1
. After

straightforward calculations we obtain the following statistics

F =
1 + R

1−R
,(18)

where R is the sample correlation coefficient.

Lemma 51. The statistics F = 1+R
1−R under null hypothesis H : ρ = 0 has

F -Snedecor distribution with n−2 degrees of freedom both for the numerator
and the denominator.

Proof. First, the distribution of R is known in the literature and among
others is reviewed by Johnson and Kotz ([3], sec 32). If we suppose that
ρ = 0, then the probability density of R has a simple form

g(r) =
1√
π

Γ(1
2(n− 1))

Γ(1
2(n− 2))

(1− r2)
n
2
−2

([5], 267-270). Next we find the probability density for random variable F =
1+R
1−R at once from the formula h(f) = g(r(f)) · |r′(f)|, where r(f) = f−1

f+1

and r′(·) denotes its derivative.

Since the statistics F under null hypotheses (2) (or (3)) has the
distribution Fn−2,n−2, we accept null hypotheses (2) at significance level
α if
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F < Fα,n−2,n−2(19)

and we accept null hypotheses (3) if

F1−α/2,n−2,n−2 < F < Fα/2,n−2,n−2.(20)

Now we prove that F -tests (19) and (20) have optimal properties, i.e. they
are the most powerful unbiased tests.

Theorem 51. The adaptive tests given by (19) and (20) are the most
powerful unbiased tests for testing hypotheses (2) and (3), respectively.

Proof. From Lemma 5.1 and using the form of t-statistics given by (15)
we have the following equality

Fα,n−2,n−2 =

√
t2α,n−2 + n− 2 + ta,n−2√
t2α,n−2 + n− 2− ta,n−2

.

([3], 88), where an inverse relation is presented). Since the F -statistics
given by (18) is a monotonic function of the t-Student statistics, thus the
tests based on the F -ratio are the most powerful tests and are equivalent to
the classical t-Student test.
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[10] R. Zmyślony, Completeness for a family of normal distributions,
Banach Center Publications 6 (1980), 355–357.

Received 5 September 2000


