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Abstract

In this paper, we study the class of inflated modified power
series distributions (IMPSD) where inflation occurs at any of sup-
port points. This class includes among others the generalized Poisson,
the generalized negative binomial and the lost games distributions.
We derive the Bayes estimators of parameters for these distributions
when a parameter of inflation is known. First, we take as the prior
distribution the uniform, Beta and Gamma distribution. In the second
part of this paper, the prior distribution is the generalized Pareto
distribution.
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1. Introduction

In this note, we consider a mixed population consisting of two groups of
individuals. The individuals of the first group follow the simple distribution,
while those of the second group are observed with a frequency significantly
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higher than can be expected on the basis of the simple distribution.
These random phenomenae are well described by inflated probability
distributions. We assume that these simple distributions can be generated
by power series.

Pandey (1964–65) has described a situation with an inflated
Poisson distribution dealing with the numbers of flowers of plants of
Primula veris (cf. Cramer (1945)). He has shown that the excessive
number of plants with eight flowers implies application of Poisson
distribution inflated at the point 8 (not zero).

One can also describe such situations in the following gambler’s ruin
problem. Let us consider two gamblers, one of whom (gambler A) is infinitely
rich and the other (gambler B) is starting with a monetary units. We observe
now joint number of games lost by these two gamblers against an infinitely
rich adversary (gambler C), without knowing who of them, the gambler A or
the gambler B, takes the game. In this case, the observed number of games
lost is inflated at the point a.

One can also find non-zero inflated distribution in the following queue
M/M/1 problem. Let us consider two queues, one of which is infinitely long
(queue A) and the other (queue B) starting with a customers. We observe
the joint number of customers served in a busy period of these two queues,
without knowing which of them is served. In this case, the observed number
of served customers in a busy period is inflated at the point a.

Gupta, Gupta and Tripathi (1995) gave the maximum likelihood
estimators and their asymptotic variance-covariance matrix of zero
inflated modified power series distribution. Our aim is to give Bayes
estimators of the parameter θ of non-zero inflated modified power series
distribution represented by the following probability function

p(x; θ) =





β + αa(s)[g(θ)]s[f(θ)]−1, x = s,

αa(x)[g(θ)]x[f(θ)]−1, x 6= s,

(1.1)

where s ≥ 0, 0 < α ≤ 1, β = 1 − α, functions f(θ) =
∞∑

x=0
a(x)[g(θ)]x, g(θ) are

positive, finite and differentiable, and a(x) > 0 are free of θ.
In Section 2, we consider the problem of estimating θ with the quadratic

loss function and the prior distribution Gamma, Beta or uniform, while in
Section 3, the prior distribution is generalized Pareto distribution. In these
Sections, we assume that the parameter of inflation α is known.
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In Section 4, we derive a posterior distribution and posterior moments of
the parameter θ based on the likelihood function.

2. The bayes estimators of θ

Let us consider the problem of estimating θ with quadratic loss function
based on the simple observation from (1.1). Then we have

Theorem 2.1. Let X be a random variable with a modified power series
distribution inflated at the point s.
(i) If the prior distribution of θ is the Beta distribution with parameters

a > 0 and b > 0, then the posterior moments of θ are given by the
formula

E[θr | x]=





βB(r + a, b) + αa(s)
1∫

0
θr+a−1(1− θ)b−1[g(θ)]s[f(θ)]−1dθ

βB(a, b) + αa(s)
1∫

0
θa−1(1− θ)b−1[g(θ)]s[f(θ)]−1dθ

, x = s,

1∫
0

θr+a−1(1− θ)b−1[g(θ)]x[f(θ)]−1dθ

1∫
0

θa−1(1− θ)b−1[g(θ)]x[f(θ)]−1dθ

, x 6= s,

where B(a, b) =
1∫

0
θa−1(1− θ)b−1dθ.

(ii) If the prior distribution of θ is the Gamma distribution with
parameters p > 0 and b > 0, then the posterior moments of θ are
given by the formula

E[θr | x] =





βΓ(p + r) + αa(s)bp+r
∞∫

0
θp+r−1e−θb[g(θ)]s[f(θ)]−1dθ

βbrΓ(p) + αa(s)bp+r
∞∫

0
θp−1e−θb[g(θ)]s[f(θ)]−1dθ

, x = s,

∞∫
0

θp+r−1e−θb[g(θ)]x[f(θ)]−1dθ

∞∫
0

θp−1e−θb[g(θ)]x[f(θ)]−1dθ
, x 6= s,

where Γ(p) =
∞∫

0
θp−1e−θdθ.



192 M. Murat and D. Szynal

Proof. Let the prior distribution of θ be the Beta distribution with
parameters a > 0 and b > 0, given as

φ(θ)=





θa−1(1− θ)b−1

B(a, b)
, 0 < θ < 1,

0, θ ∈ (−∞, 0 > ∪ < 1,∞).

In this case

q(x; θ)=





(
β + αa(s)[g(θ)]s[f(θ)]−1

) θa−1(1− θ)b−1

B(a, b)
, x = s, 0 < θ < 1,

αa(x)[g(θ)]x[f(θ)]−1 θa−1(1− θ)b−1

B(a, b)
, x 6= s, 0 < θ < 1.

Hence the probability function of θ given x has the form

h(θ | x)=





[β + αa(s)[g(θ)]s[f(θ)]−1]θa−1(1− θ)b−1

βB(a, b) + αa(s)
1∫

0
θa−1(1− θ)b−1[g(θ)]s[f(θ)]−1dθ

, x = s,

[g(θ)]x[f(θ)]−1θa−1(1− θ)b−1

1∫
0

θa−1(1− θ)b−1[g(θ)]x[f(θ)]−1dθ

, x 6= s

and the posterior moments are given by (i).
To obtain the posterior moments from (ii) we observe that if the prior

distribution of θ is gamma distribution with the probability function

φ(θ)=





bp

Γ(p)
θp−1e−bθ, θ > 0,

0, θ ≤ 0,

then the probability function of θ given x is

h(θ | x)=





[β + αa(s)[g(θ)]s[f(θ)]−1]bpθp−1e−bθ

βΓ(p) + αa(s)bp
∞∫

0
θp−1e−bθ[g(θ)]s[f(θ)]−1dθ

, x = s,

[g(θ)]x[f(θ)]−1θp−1e−bθ

∞∫
0

θp−1e−bθ[g(θ)]x[f(θ)]−1dθ
, x 6= s.
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This ends the proof.

It is interesting to note that putting in (i) a = 1 and b = 1 we get the
following result.

Corollary 2.1. If the prior distribution of θ is the uniform distribution on
(0, 1), then the posterior moments of θ are given by the formula

E[θr | x]=





β + (r + 1)αa(s)
1∫

0
θr[g(θ)]s[f(θ)]−1dθ

(r + 1)

[
β + αa(s)

1∫
0

[g(θ)]s[f(θ)]−1dθ

] , x = s,

1∫
0

θr[g(θ)]x[f(θ)]−1dθ

1∫
0

[g(θ)]x[f(θ)]−1dθ

, x 6= s.

One can see that putting in the above formulae r = 1, we obtain the Bayes
estimators δ(x) = E[θ | x] of parameter θ of IMPSD, when the parameter
of inflation α is known.

Now we give some examples.

Example 2.2. The generalized negative binomial probability function
inflated at the point s ≥ 0
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p(x; θ)=





1− α + α
mΓ(m + γx)[θ(1− θ)γ−1]x

x!Γ(m + γx− x + 1)(1− θ)−m
, x = s,

α
mΓ(m + γx)[θ(1− θ)γ−1]x

x!Γ(m + γx− x + 1)(1− θ)−m
, x 6= s,

where 0 < θ < 1, | θγ |< 1, can be represented in the form (1.1) with

a(x) =
mΓ(n + γx)

x!Γ(m + γx− x + 1)
, f(θ) = (1− θ)−m, g(θ) = θ(1− θ)γ−1.

For this probability function we obtain the following results.

(a) If the prior distribution of θ is the uniform distribuiton, then the Bayes
estimator of θ has the form

δ(x)=





βΓ(γs+k+3) + 2αk(s+1)Γ(k+γs)
2βΓ(γs+k+3) + 2αkΓ(k+γs)(γs+k+2)

, x = s,

x + 1
γx + k + 2

, x 6= s.

(b) If the prior distribution of θ is the Beta distribution with the
parameters a > 0, b > 0, then the Bayes estimator of θ has the form

δ(x)=





βs!Γ(γs−s+k+1)B(a+1, b)+αkΓ(γs+k)B(a+s+1, γs−s+k+b)
βk!Γ(γs−s+k+1)B(a, b) + αkΓ(γs+k)B(a+s, γs−s+k+b) , x=s,

x + a
a + b + k + γx, x 6= s.

Example 2.3. The generalized Poisson probability function inflated at the
point s

p(x; θ)=





1− α + αθx(1 + γx)x−1e−θ(1+γx)/x!, x = s,

αθx(1 + γx)x−1e−θ(1+γx)/x!, x 6= s,
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where | θγ |< 1 can be represented in the form (1.1) with

a(x) =
(1 + γx)x−1

x!
, f(θ) = eθ, g(θ) = θe−γθ.

If the prior distribution of θ is the Gamma distribution with the parameters
p > 0 and b > 0, then the Bayes estimator of θ has the form

δ (x)=





s!βΓ(p+1)(b+γs+1)p+s+1 + α(1+γs)s−1bp+1Γ(p+s+1)
s!βΓ(p)(b+γs+1)p+s+1 + α(1+γs)s−1bpΓ(p+s)(b+γs+1)

, x = s,

x + p
1 + b + γx, x 6= s.

In practice, we use n observations of a sample X1, X2, ..., Xn. To give
the above estimators in this case we can apply the distribution of sum
Zn = X1 + X2 + ... + Xn. The probability function of Zn is known when
the inflation occurs at the first point of the support of X (cf. Gupta, Gupta
and Tripathi (1995) for s = 0; Murat and Szynal (1998) for s ≥ 0).

Theorem 2.4. The distribution of Zn is given by

P [Zn = z] =





n∑
k=0

(n
k

)
αkβn−k ak(ks)[g(θ)]ks

[f(θ)]k
, z = ns,

n∑
k=0

(n
k

)
αkβn−k ak(z−(n−k)s)[g(θ)]z−(n−k)s

[f(θ)]k
, z = ns + 1, ns + 2, ...,

where a0(0) = 1, a1(x) = a(x), ak(x) =
x∑

y=s
a(y)ak−1(x − y), k = 2, 3, ..., n,

are coefficients of [g(θ)]x in [f(θ)]k.

Assume now that

p(x; θ)=





β + αa(s)[g(θ)]s[f(θ)]−1, x = s,

αa(x)[g(θ)]x[f(θ)]−1, x = s + 1, s + 2 ... .
(2.1)
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Using Theorem 2.4 we get

Theorem 2.5. Let X1, X2, ..., Xn be a sample from (2.1).

(i) If the prior distribution of θ is the uniform distribution on (0, 1), then
the posterior moments of θ are given by the following formula

E[θr |x]=





n∑
k=0

(n
k)αkβn−kak(ks)

1∫
0

θr[g(θ)]ks[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(ks)

1∫
0

[g(θ)]ks[f(θ)]−kdθ

, z = ns,

n∑
k=1

(n
k)αkβn−kak(z−(n−k)s)

1∫
0

θr[g(θ)]z−(n−k)s[f(θ)]−kdθ

n∑
k=1

(n
k)αkβn−kak(z−(n−k)s)

1∫
0

[g(θ)]z−(n−k)s[f(θ)]−kdθ

, z > ns.

(ii) If the prior distribution of θ is the Beta distribution with parameters
a > 0 and b > 0, then the posterior moments of θ are given by the
formula

E[θr|x]=





n∑
k=0

(n
k)αkβn−kak(ks)

1∫
0

θa+r−1(1−θ)b−1[g(θ)]ks[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(ks)

1∫
0

θa−1(1−θ)b−1[g(θ)]ks[f(θ)]−kdθ

, z = ns,

n∑
k=1

(n
k)αn−kβn−kak(z−(n−k)s)

1∫
0

θa+r−1(1−θ)b−1[g(θ)]z−(n−k)s[f(θ)]−kdθ

n∑
k=1

(n
k)αkβn−kak(z−(n−k)s)

1∫
0

θa−1(1−θ)b−1[g(θ)]z−(n−k)s[f(θ)]−kdθ

, z>ns.

(iii) If the prior distribution of θ is the Gamma distribution with parameters
p > 0 and b > 0, then the posterior moments of θ are given by the
formula
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E[θr |x]=





n∑
k=0

(n
k)αkβn−kak(ks)

∞∫
0

θp+r−1e−θb[g(θ)]ks[f(θ)]−kθ

n∑
k=0

(n
k)αkβn−kak(ks)

1∫
0

θp−1e−θb[g(θ)]ks[f(θ)]−kdθ

, z = ns,

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

1∫
0

θp+r−1e−θb[g(θ)]z−(n−k)s[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

1∫
0

θp−1e−θb[g(θ)]z−(n−k)s[f(θ)]−kdθ

, z > ns.

From (i) – (iii), putting r = 1, we get the Bayes estimator δ(z) = E[θ | x]
of parameter θ when the parameter of inflation α is known.

Let us consider some examples.

Example 2.6. If a sample X1, X2, ..., Xn is from the inflated binomial
distribution, then from Gupta, Gupta and Tripathi (1995) we have

ak(z) =
kmΓ(γz + km)

Γ(z + 1)Γ(γz + km− x + 1)
.

(a) Assuming that the prior distribution of θ is the uniform distribution
on (0, 1) we get

δ(z)=





s
n∑

k=0
(n

k)αkβn−k kΓ(γks+km)Γ(m(n−k)+sk(γ−1))
Γ(γks+km−ks+1)Γ(m(n−k)+γks+1)

n∑
k=0

(n
k)αkβn−k Γ(γks+km)Γ(m(n−k)+sk(γ−1))

Γ(γks+km−ks+1)Γ(m(n−k)+γks)

, z=ns,

(z+1)
n∑

k=1
(n

k)αkβn−k[(γz+m+2)(γz+m+1)(γz+m)]−1

n∑
k=1

(n
k)αkβn−k[(γz+m+1)(γz+m)]−1

, z>ns.

(b) If the prior distribution of θ is the Beta distribution with the
parameters a > 0, b > 0, then we have
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δ(z)=





n∑
k=0

(n
k)αkβn−k kγ(γks+km)B(a+ks+1,b+m(n−k)+ks(γ−1))

Γ(ks+1)Γ(γks+km−ks+1)

n∑
k=0

(n
k)αkβn−k kγ(γks+km)B(a+ks,b+m(n−k)+ks(γ−1))

Γ(ks+1)Γ(γks+km−ks+1)

, z=ns,

n∑
k=1

(n
k)αkβn−kB(a+1,γz−z+b+km)B(1−z,km+γz)

n∑
k=1

(n
k)αkβn−kB(a,γz−z+b+km)B(1−z,km+γz)

, z>ns.

Example 2.7. If a sample X1, X2, ..., Xn is from the inflated generalized
Poisson distribution, then from Gupta, Gupta and Tripathi (1995) we have

ak(z) =
k(k + γz)z−1

z!
.

If the prior distribution of θ is the Gamma distribution with the parameters
p > 0 and b > 0, then we obtain

δ(z)=





p
n∑

k=0

(n
k

)
αkβn−k kz−1

(ks−1)!
Γ(p+ks+1)

(b+n−k+γks)p+ks+1

n∑
k=0

(n
k

)
αkβn−k kz−1

(ks−1)!
Γ(p+ks)

(b+n−k+γks)p+ks

, z=ns,

(z + p)
n∑

k=0

(n
k

)
αkβn−kk(k + γz)z−1(k + b + γz)p+z+1

n∑
k=0

(n
k

)
αkβn−kk(k + γz)z−1(k + b + γz)p+z

, z>ns.

3. Generalized pareto distribution as a prior distribution

In this Section, we assume that the prior distribution of θ is the generalized
Pareto distribution, given by the following probability function

φ=





(1 + bθ)−1− 1
b , θ ≥ 0, b > 0,

e−θ, θ ≥ 0, b = 0

(1 + bθ)−1− 1
b , θ ∈ (0,−1

b ), b < 0,

(3.1)

(cf. Pikands (1975) and Ahsanullah (1994)).
In this case we obtain what follows.
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Theorem 3.1. Let X be an observation from modified power series distri-
bution inflated at the point s. If the prior distribution of θ is the distribution
(3.1), then the posterior moments of θ are given by the following formula

(i) for b > 0

E[θr | x]=





Cβ + αa(s)
∞∫

0
θr(1 + bθ)−1−1

b [g(θ)]s[f(θ)]−1dθ

β + αa(s)
∞∫

0
(1 + bθ)−1−1

b [g(θ)]s[f(θ)]−1dθ
, x = s,

∞∫
0

θr(1 + bθ)−1−1
b [g(θ)]x[f(θ)]−1dθ

∞∫
0

(1 + bθ)−1−1
b [g(θ)]x[f(θ)]−1dθ

, x 6= s;

(ii) for b = 0

E[θr | x]=





βΓ(r + 1) + αa(s)
∞∫

0
θre−θ[g(θ)]s[f(θ)]−1dθ

β + αa(s)
∞∫

0
e−θ[g(θ)]s[f(θ)]−1dθ

, x = s,

∞∫
0

θre−θ[g(θ)]x[f(θ)]−1dθ

∞∫
0

e−θ[g(θ)]x[f(θ)]−1dθ
, x 6= s;

(iii) for b < 0

E[θr | x]=





Cβ + αa(s)
− 1

b∫
0

θr(1 + bθ)−1− 1
b [g(θ)]s[f(θ)]−1dθ

β + αa(s)
− 1

b∫
0

(1 + bθ)−1−1
b [g(θ)]s[f(θ)]−1dθ

, x = s,

− 1
b∫

0
θr(1 + bθ)−1−1

b [g(θ)]x[f(θ)]−1dθ

− 1
b∫

0
(1 + bθ)−1−1

b [g(θ)]x[f(θ)]−1dθ

, x 6= s,
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where C =
(−1)rr!

(rb− 1)((r − 1)b− 1)...(2b− 1)(b− 1)
.

Now we consider some special cases.

Example 3.2. Let X be a random variable with generalized Poisson
distribution inflated at the point s and let the prior distribution of θ be
the generalized Pareto distribution with b = 0. Then the Bayes estimator
of θ is given by the formula

δ (x)=





β(γs + 2)s+2 + α(1 + γs)s−1(s + 1)
β(γs + 2)s+2 + α(1 + γs)s−1(γs + 2)

, x = s,

x + 1
γx + 2

, x 6= s.

Example 3.3. Let X be an observation from lost games distribution
inflated at the point γ with the folowing probability function

p(x; θ)=





β + α γ
2x−γ

(2x−γ
x

) (θ(1−θ))x

θγ , x = s,

α γ
2x−γ

(2x−γ
x

) (θ(1−θ))x

θγ , x 6= s,

where 0 < θ < 1
2 , γ ≥ 1.

One can see that for α = 1 we get the lost games distribution considered
by Janardan (1984) and Kemp and Kemp (1968).

Let the prior distribution of θ be the generalized Pareto distribution with
b = −2. Then the Bayes estimator of θ is given by the folowing formula

δ (x)=





(2s− γ)2s−γ+2Γ
(

s− γ +
5
2

)
β + F2

3(2s− γ)2s−γ+2Γ
(

s− γ +
5
2

)
β + 2

(
s− γ +

3
2

)
F1

, x = s,

(x− γ + 1)F
(
−x, x− γ + 2, x− γ +

5
2
,
1
2

)

(2x− 2γ + 3)F
(
−x, x− γ + 1, x− γ +

3
2
,
1
2

) , x 6= s,

where

Fi =F

(
γ(n−k)−z, z−nγ+i, z−nγ+i+

1
2
,
1
2

)
, i=1, 2,
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and F (a, b, c, z) = Γ(c)
Γ(b)Γ(c−b)

1∫
0

tb−1(1−t)c−b−1(1−tz)−adt is a hypergeometric

function with parameters a, b, c.

Example 3.4. Let X be an observation from distribution of the number of
customers served in a busy period of the queue M/M/1 inflated at the point
γ with the folowing probability function

p(x; θ)=





β + α 1
2γ−1

(2γ−1
γ

) [
θ

(1+θ)2

]x (
θ

1+θ

)γ
, x = s,

α 1
2x−γ

(2x−γ
x

) [
θ

(1+θ)2

]x (
θ

1+θ

)γ
, x 6= s,

where 0 < θ < 1
2 , γ ≥ 1.

One can see that for α = 1 we get the distribution considered by
Kemp and Kemp (1968).

Let the prior distribution of θ be the generalized Pareto distribution
with b=−2. Then the Bayes estimator of θ is given by the folowing formula

δ (x)=





(2s− γ)2γ−2s+2Γ
(

γ − 2s +
5
2

)
β + F2

3(2s− γ)2γ−2s+2Γ
(

γ − 2s +
5
2

)
β + (4s + 2γ + 3)F1

, x = s,

(γ − 2x + 1)F
(

2x + γ, γ − 2x + 2, γ − 2x +
5
2
,−1

2

)

(2γ − 4x + 3)F
(

2x + γ, γ − 2x + 1, γ − 2x +
3
2
,−1

2

) , x 6= s.

Now we consider the problem of estimating θ based on a given sample
X1, X2, ..., Xn from (2.1). Using Theorem 2.4 we obtain.

Theorem 3.5. Let X1, X2, ..., Xn be a sample from (2.1). If the prior
distribution of θ is the generalized Pareto distribution, then the posterior
moments of θ are given by the formula
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(i) for b > 0

E[θr|x]=





n∑
k=0

(n
k)αkβn−kak(ks)

∞∫
0

θr(1+bθ)
−1−1

b [g(θ)]ks[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(ks)

∞∫
0

(1+bθ)
−1−1

b [g(θ)]ks[f(θ)]−kdθ

, z = ns,

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

∞∫
0

θr(1+bθ)
−1−1

b[g(θ)]z−(n−k)s[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

∞∫
0

(1+bθ)
−1−1

b [g(θ)]z−(n−k)s[f(θ)]−kdθ

, z > ns;

(ii) for b = 0

E[θr |x]=





n∑
k=0

(n
k)αkβn−kak(ks)

∞∫
0

θre−θ[g(θ)]ks[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(ks)

∞∫
0

e−θ[g(θ)]ks[f(θ)]−kdθ

, z = ns,

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

∞∫
0

θre−θ[g(θ)]z−(n−k)s[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

∞∫
0

e−θ[g(θ)]z−(n−k)s[f(θ)]−kdθ

, z > ns;

(iii) for b < 0

E[θr|x]=





n∑
k=0

(n
k)αkβn−kak(ks)

− 1
b∫

0

θr(1+bθ)
−1−1

b [g(θ)]ks[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(ks)

− 1
b∫

0

(1+bθ)
−1−1

b [g(θ)]ks[f(θ)]−kdθ

, z = ns,

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

− 1
b∫

0

θr(1+bθ)
−1−1

b [g(θ)]z−(n−k)s[f(θ)]−kdθ

n∑
k=0

(n
k)αkβn−kak(z−(n−k)s)

− 1
b∫

0

(1+bθ)
−1−1

b [g(θ)]z−(n−k)s[f(θ)]−kdθ

, z > ns.
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Now we give some examples.

Example 3.6. If a sample X1, X2, ..., Xn is from the inflated generalized
Poisson distribution, then using (ii) we obtain

δ(z)=





n∑
k=0

(n
k

)
αkβn−k(k + 1)−2

n∑
k=0

(n
k

)
αkβn−k(k + 1)−1

, z = ns

n∑
k=0

(n
k

)
αkβn−kk(γz + k + 1)−z−2(γz + k)z−1

n∑
k=0

(n
k

)
αkβn−kk(γz + k + 1)−z−1(γz + k)z−1

, z > ns.

Example 3.7. If a sample X1, X2, ..., Xn is from the lost games distribution
inflated at the point γ, then using (iii) for b = −2 we obtain

δ(z)=





n∑
k=0

(n
k

)
ak(kγ)F (−kγ, 2, 5

2 , 1
2)

3
n∑

k=0

(n
k

)
ak(kγ)F (−kγ, 1, 3

2 , 1
2)

, z = nγ,

(z + nγ + 1)
n∑

k=0

(n
k

)
ak(z − (n− k)γ)F2

(2z − 2nγ + 3)
n∑

k=0

(n
k

)
ak(z − (n− k)γ)F1

, z > nγ.

Example 3.8. If a sample X1, X2, ..., Xn is from (3.2), then using (iii) for
b = −2 we obtain

δ(z)=





n∑
k=0

(n
k

)
ak(kγ)2−2kγG2

3
n∑

k=0

(n
k

)
ak(kγ)2−2kγG1

, z = nγ,

n∑
k=0

(n
k

)
ak(z − (n− k)γ)H2

n∑
k=0

(n
k

)
ak(z − (n− k)γ)H1

, z > nγ,
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where

Gi =
Γ(2kγ+i)

Γ(2kγ+i+ 1
2)

F

(
3kγ, 2kγ+i, 2kγ+i+

1
2
,−1

2

)
, i=1, 2,

and

Hi =
Γ(z − nγ+2kγ+i)

Γ(z−nγ+2kγ+i+ 1
2)

×F

(
2(nγ−z)−3kγ, z−nγ+2kγ+i, z−nγ+2kγ+i+

1
2
,−1

2

)
, i=1, 2.

4. Posterior distributions and moments of IMPSD based on
likelihood function

In Sections 2 and 3, we give Bayesian estimators using, among others, the
distribution of the sum Zn = X1+X2+...+Xn. In these Sections, we assume
that the random variables X1, X2, ..., Xn have the distribution inflated at the
first point of their support. In this Section, we consider random variables
with probability function inflated at any of support points. In such situations
the distribution of the sum Zn is unknown. To obtain the Bayes estimator
of the parameter θ we use the following likelihood function

L(θ, α | x) =

=
ns∑

j=0

(
ns

j

)
αjβN−ja(s)−j

N−ns∏

i=1

a(xi)ni [g(θ)]y−sj [f(θ)]j−N ,

(4.1)

where x = (x1, x2, ..., xN ), y =
N−ns∑
i=1

xi and ni is the number of observations

in the i’th class such that
∑
i≥0

ni = N .

Theorem 4.1. Let X be a random variable with modified power series
distribution inflated at the point s.
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(i) If the prior distribution of θ is the uniform distribution on (0, 1), then
the posterior moments of θ are given by the formula

E(θr | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

1∫
0

θr[g(θ)]y−sj [f(θ)]j−Ndθ

ns∑
j=0

(ns

j

)
αjβN−j

1∫
0

[g(θ)]y−sj [f(θ)]j−Ndθ

.

(ii) If the prior distribution of θ is the Beta distribution with parameters
a > 0 and b > 0, then the posterior moments of θ are given by the
formula

E(θr | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

1∫
0

θa+r−1(1−θ)b−1[g(θ)]y−sj [f(θ)]j−Ndθ

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

1∫
0

θa−1(1−θ)b−1[g(θ)]y−sj [f(θ)]j−Ndθ

.

(iii) If the prior distribution of θ is the Gamma distribution with parameters
p > 0 and b > 0, then the posterior moments of θ are given by the
formula

hE(θr | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

θp+r−1e−θb[g(θ)]y−sj [f(θ)]j−Ndθ

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

θp−1e−θb[g(θ)]y−sj [f(θ)]j−Ndθ
.

Proof. Let the prior distribution of θ be the uniform distribution on (0, 1).
Then applying Bayes theorem to (4.1), we obtain the posterior distribution
of θ which is given by
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h(θ | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j [g(θ)]y−sj [f(θ)]j−N

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

1∫
0

[g(θ)]y−sj [f(θ)]j−Ndθ

.(4.2)

Hence the posterior moments of θ out of (4.2) by multipying h(θ | x) by θr

and integrating by θ.

If we assume that the prior distribution of θ is the Beta distribution
with parameters a > 0 and b > 0 and if we apply Bayes theorem to (4.1),
we have the posterior distribution of θ in the form

h(θ | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−jθa−1(1−θ)b−1[g(θ)]y−sj [f(θ)]j−N

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

1∫
0

θa−1(1−θ)b−1[g(θ)]y−sj [f(θ)]j−Ndθ

.

Hence we get the posterior moments of θ.

Assuming that the prior distribution of θ is the Gamma distribution
with parameters p > 0 and b > 0 and applying Bayes theorem to (4.1), we
obtain the posterior distribution of θ which is given by

h(θ | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j [g(θ)]y−sj [f(θ)]j−Nθpe−θb

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

θp−1e−θb[g(θ)]y−sj [f(θ)]j−Ndθ
.

Hence we obtain the posterior moments of θ.

Theorem 4.2. Let X be a random variable with modified power series distri-
bution inflated at the point s. If the prior distribution of θ is the generalized
Pareto distribution, then the posterior moments of θ are as follows

(i) for b > 0
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E(θr | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

θr(1+bθ)−1−1
b [g(θ)]y−sj [f(θ)]j−Ndθ

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

(1+bθ)−1−1
b [g(θ)]y−sj [f(θ)]j−Ndθ

,

(ii) for b = 0

E(θr | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

θre−θ[g(θ)]y−sj [f(θ)]j−Ndθ

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

e−θ[g(θ)]y−sj [f(θ)]j−Ndθ
,

(iii) for b < 0

E(θr | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

− 1
b∫

0
θr(1+bθ)−1−1

b [g(θ)]y−sj [f(θ)]j−Ndθ

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

− 1
b∫

0
(1+bθ)−1−1

b [g(θ)]y−sj [f(θ)]j−Ndθ

,

respectively.

Proof. Applying Bayes theorem and assuming that the prior distribution
of θ is the generalized Pareto distribution, we obtain the following posterior
distribution

(i) for b > 0

h(θ | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j(1+bθ)−1−1

b [g(θ)]y−sj [f(θ)]j−N

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

(1+bθ)−1−1
b [g(θ)]y−sj [f(θ)]j−Ndθ

,
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(ii) for b = 0

h(θ | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−je−θ[g(θ)]y−sj [f(θ)]j−N

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

∞∫
0

e−θ[g(θ)]y−sj [f(θ)]j−Ndθ
,

(iii) for b < 0

h(θ | x)=

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j(1+bθ)−1−1

b [g(θ)]y−sj [f(θ)]j−N

ns∑
j=0

(ns

j

)
αjβN−ja(s)−j

− 1
b∫

0
(1+bθ)−1−1

b [g(θ)]y−sj [f(θ)]j−Ndθ

.

Hence we get the posterior moments.
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