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Abstract

A linear model in which the mean vector and covariance matrix
depend on the same parameters is connected. Limit results for these
models are presented. The characteristic function of the gradient of
the score is obtained for normal connected models, thus, enabling the
study of maximum likelihood estimators. A special case with diagonal
covariance matrix is studied.
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1 Introduction

A linear model
y = Xβ + e

with y-an n dimensional random vector, X-an n× k known fixed matrix of
rank k < n, β-an k dimensional vector of unknown parameters and e-an n
dimensional unobservable random vector with null mean value is connected
when V [y] = V [e] = V depends on X, β and, possibly, nuissance parameters.
In this case we write V = [gij(λ)], with λ

′
= [β

′ |τ ′ ]-an s dimensional vector
and τ -an h dimensional unknown vector. The gij(λ), i, j = 1, ..., n are real
valued functions of λ and the observed constants, present in the matrix X.
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The special case in which y is normal and V is diagonal with principal
elements that depend on X through the corresponding line vectors was
already studied (see [7]). We now obtain limit results that apply in the
general case as well as the expression of the characteristic function of the
score’s gradient when errors are normal. This expression is useful in check-
ing assumptions required in the limit results. We also show how to use the
Newton-Raphson method to obtain maximum likelihood estimates in nor-
mal connected models. Lastly, we apply our results to a special case similar
to the one considered in [7], so that comparisons can be made.

2 Limit Results

We will use the notation Nl(λ)={a : ||a−λ||<1l} and Nl(λ)∗ for the closure
of Nl, and with Zn(y, λ) = Zn(λ) a random variable, µn(λ) = E[Zn(λ)]
and σ2

n(λ) = V [Zn(λ)]. In will stand for the order n identity matrix, with
J-a matrix, J+ is the Moore-Penrose inverse, if J is square, |J | will stand
for the determinant and i =

√−1. We will also use Rp to represent the
p dimensional Euclidean space. P→ and L→ will denote convergence in
probability and law, respectively. Unless otherwise specified, all limits will
be taken as n → ∞. The Appendix presents or at least outlines the
proofs of:

Proposition 21. If, with λ in an open set B, µn(λ)→g(λ), σ2
n(λ)→0, and

∀ε > 0, ∃Nl(λ) ⊆ B, such that P [supa∈Nl(λ) |Zn(a)−Zn(λ)|<ε] → 1, then
g(λ) is continuous in B.

Proposition 22. If σ2
n(λ) → 0, we have Zn(λ) P→ g(λ) if and only if

µn(λ) → g(λ). If, whenever λ ∈ B, the conditions of Proposition 21 hold
for {Zn(λ)}, given a compact set C ⊂ B, then supλ∈C |Zn(λ)− g(λ)| P→ 0.

We write Zn(λ)
Pu(C)→ g(λ).

Corollary 23. If, whenever λ ∈ B, the conditions of Proposition 21 hold
for {Zn(λ)} and if λn

P→ λ, then Zn(λn) P→ g(λ).

Propositions 21 and 22 togheter with Corollary 23, allow us to prove Propo-
sition 24, which is a generalization of a result presented by Amemiya in [1,
page 106].



Likelihood and parametric heteroscedasticity in ... 179

Proposition 24. If, whenever λ ∈ B, the conditions of Proposition 21 hold
for {Zn(λ)}, if g(λ) has a sole maximum; λ0 ∈ B and there is C ⊂ B,
such that λ0 ∈ C and that P [Zn(λ0) > supλ∈B−C Zn(λ)] → 1, then for any

supremum λ̂n of Zn(λ) in B, λ̂n
P→ λ0.

If, following Amemiya in [1, Chapter 4], we assume that ∂Zn(λ)/∂λ and
∂2Zn(λ)/∂λ∂λ

′
are continuous in λ, from Proposition 24 follows

Corollary 25. If
√

n∂Zn(λ0)/∂λ
L→ N(0,W ), ∂Zn(λ̃n)/∂λ = 0, λ̃n

P→ λ0,
and if, whenever λ̂n

P→ λ0, ∂2Zn(λ̂n)/∂λ∂λ
′ P→ K, with K regular, then√

n(λ̃n − λ0)
L→ N(0,K−1WK−1).

The next corollary allows us to obtain the same asymptotic result for λ̂n,
but now by checking the conditions of Proposition 21 over the second order
partial derivative of Zn(λ) with respect to λ.

Corollary 26. If

i) whenever λ̂n is a maximum of Zn(λ) in B, λ̂n
P→ λ0,

ii)
√

n∂Zn(λ0)/∂λ
L→ N(0,W ),

iii) there is a neighborhood Nl(λ0) such that if λ ∈ Nl(λ0), the
conditions of Proposition 21 hold for ∂2Zn(λ)/∂λ∂λ

′
,

iv) the matrix K = limE[∂2Zn(λ0)/∂λ∂λ
′
] is regular,

then
√

n(λ̂n − λ0)
L→ N(0,K−1WK−1).

Proposition 24 and its two corollaries will play a central part in our study.

3 Score function for normal models

We now assume the errors em, m = 1, ..., n, to be normal with null mean
values. The score function divided by n will be

Zn(λ) = − ln(2π)/2− ln(|V |)/(2n)− (y −Xβ)
′
V −1(y −Xβ))/(2n)(3.1)

the maximum likelihood estimates being derived from this function.
To check the convergence in law of

√
n∂Zn(λ0)/∂λ, required in

Corollaries 25 and 26, we will use later on the characteristic function
φn(t) of the s dimensional vector H =

√
n∂Zn(λ0)/∂λ. It is easy to
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write the components of H as −(h
′
Amh + 2b

′
mh + cm)/

√
n, where h is an

n dimensional normal random vector, with null mean value and covariance
matrix J−1, b1, ..., bs are fixed vectors, c1, ..., cs are constants and

∑s
j=1 tjAj

is regular. Using the results on quadratic forms of normal vectors
presented in [10, pages 16-18], we may write

φn(t) =

exp

[
− i

n
t
′
c− 2

n
t
′
B
′
G′

(
In +

2i

n
D

)−1

GBt− 1
2

ln
(
|In +

2i

n
D|

)]
,

(3.2)
where B

′
is a matrix with line vectors b1, ..., bs and G is such that GJG

′
= In

and G(
∑s

v=1 Avtv)G
′

= D, with D diagonal, about these matrices see
[9, pages 6–7]. It can be shown that D does not depend on matrix G.

Usually, an explicit maximum likelihood estimator derived from (3.1)
is very difficult to obtain. However, under mild conditions, we can use the
Newton-Raphson method to obtain a root of the first order partial derivative
with respect to λ, that is we can use the equation

λv+1 = λv −
[
∂2Zn(λv)

∂λ′∂λ

]−1
∂Zn(λv)

∂λ
, v = 1, 2, ...(3.3)

to generate a sequence convergent to a local maximum of Zn(λ).
To check on assumptions and how to solve some problems regarding the

convergence of the method, see for instance [4, 5, 3] and [2].

4 A Special case

We will now add the assumptions:

Assumption 1. The parameter vector λ ∈ S ⊂ Rs an open bounded set
(so, λ0 will be an interior point of S).

Assumption 2. The rows of X, denoted by xm, m = 1, ..., n, belong to
U ⊂ Rp a compact set.

Assumption 3. V [e] = D(g) with D a diagonal matrix and g an n
dimensional vector with components, gm = θ0xtβ0, x

′
mβ0 > 0 and θ0 > 0,

m = 1, ..., n.
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Assumption 4. The matrix limits n−1X
′
X, n−1X

′
D(µ)−1X and

n−1X
′
D(µ)−2X exist and are positive definite for all λ ∈ S. With D(µ)

a diagonal matrix, whose main diagonal has components x
′
mβ, m = 1, ..., n.

In this case, we have for the limit of the natural logarithm of
expression (3.2)

lim ln(φn(t)) = −1
2
t
′




1
θ0

A(µ0) + 1
2B(µ0) 0

0 1
2θ2

0


 t

with A(µ0) = limn−1X
′
D(µ0)−1X and B(µ0) = limn−1X

′
D(µ0)−2X,

where D(µ0) is a diagonal matrix, whose main diagonal has components
x
′
mβ0, m = 1, ..., n, and so, it’s immediate that

√
n∂Zn(λ0)/∂λ

converges in distribution to a normal random vector with null mean
vector.

Another nice property of this example is that we don’t need to calculate
the expected value of the second order partial derivatives of (3.1), because,
we know that (see [1, pages 14–17] or [12, page 366]), −E[∂2Zn(λ)/∂λ∂λ

′
] =

E[(∂Zn(λ)/∂λ)(∂Zn(λ)∂/λ
′
)], making obvious that E[∂2Zn(λ)/∂λ∂λ

′
] is

negative definite, each is a necessary condition for the convergence of the
sequence defined by (3.3). In this case, we can conclude that

√
n(λ̂n−λ0)

L→
N(0,W ), with

W =

[
( 1

θ0
A(µ0) + 1

2B(µ0))−1 0
0 2θ2

0

]
.(4.1)

We now conduct a simple Monte Carlo study similar to the one presented in
[7], making use of expression (3.3) to obtain estimates for the parameter vec-
tor λ = [10, 4,−2, θ] with θ taking values in {0.1, 0.2, 0.4, 1, 10} (see tables
below). We will use the same (40×3) X matrix as in [7] with the first column
a column of ones, the second and third columns extracted from, respectively,
Table E1 and Table E6 in [11], from this matrix we obtain a second
(80 × 3) X matrix, by duplication of the first one. For each case, 200
multivariate normal e vectors were generated. We used as first element of the
sequence (3.3)

λ̂
′
1 = [β̂

′
, θ̂] = [((X

′
X)−1X

′
y)
′
, n−1(y − ŷ)

′
D−1(µ̂)(y − ŷ)],

where ŷ = Xβ̂ and D(µ̂) is a diagonal matrix, whose main diagonal has
components x

′
mβ̂, m = 1, ..., n.

The following tables summarize our study, where we used Avrg and V ar
for shorthands of, respectively, the estimates’ average and variance.
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We obtain, for the sample size 40:

θ=0.1 β1=10 β2=4 β3=-2

Avrg Var Avrg Var Avrg Var Avrg Var

.090254 .00056095 9.9616 1.6256 4.003 .0082831 -1.9972 .0048448

θ=0.2 β1=10 β2=4 β3=- 2

Avrg Var Avrg Var Avrg Var Avrg Var

.18047 .0022451 9.945 3.2544 4.0043 .016556 -1.9961 .0096744

θ=0.4 β1=10 β2=4 β3=- 2

Avrg Var Avrg Var Avrg Var Avrg Var

.36084 .0089928 9.9207 6.5178 4.0063 .033083 -1.9946 .019308

θ=1 β1=10 β2=4 β3=- 2

Avrg Var Avrg Var Avrg Var Avrg Var

.90177 .05646 9.8704 16.338 4.0105 4.6914 -1.992 .048085

θ=10 β1=10 β2=4 β3=- 2

Avrg Var Avrg Var Avrg Var Avrg Var

9.0456 6.102 9.5126 166.14 4.0462 .82552 -1.9891 .47324

For the sample size 80:

θ=0.1 β1=10 β2=4 β3=-2

Avrg Var Avrg Var Avrg Var Avrg Var

.09498 .0002679 9.9705 .85565 4.0001 .0042058 -1.9963 .0026799

θ=0.2 β1=10 β2=4 β3=-2

Avrg Var Avrg Var Avrg Var Avrg Var

.18993 .0010684 9.9567 1.7099 4.0002 .0083918 -1.9949 .0053614

θ=0.4 β1=10 β2=4 β3=- 2

Avrg Var Avrg Var Avrg Var Avrg Var

.3798 .0042582 9.9358 3.4153 4.0006 .016724 -1.993 .010724
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θ=1 β1=10 β2=4 β3=- 2

Avrg Var Avrg Var Avrg Var Avrg Var

.94926 .026481 9.889 8.5104 4.0017 .041483 -1.9894 .026788

θ=10 β1=10 β2=4 β3=- 2

Avrg Var Avrg Var Avrg Var Avrg Var

9.5088 2.7353 9.4738 82.607 4.023 .39147 -1.9799 .25972

We can immediately check that, even for large values of θ, the Monte Carlo
study is consistent with the large-sample theory, while in [7] large variances
are not considered. These conclusions continue to hold when the asymptotic
covariance matrices are considered. For instance, in the extremes cases of
our study; θ = 0.1 and θ = 10, we have for expression (4.1), respectively:




68.8505 −3.95221 0.66972 0
−3.95221 0.331564 −0.167516 0
0.66972 −0.167516 0.195028 0

0 0 0 0.002




and 


6297.5 −364.48 63.1942 0
−364.48 30.7949 −15.556 0
63.1942 −15.556 17.9186 0

0 0 0 200




.

5 Appendix

Proof of Proposition 21. Given a ∈ Nl(λ) there exists m ∈ ℵ such
that for n > m

|µn(a)− g(a)| < ε,

so that

P [|Zn(a)− g(a)| < 2ε] ≥ P [|Zn(a)− µn(a)| < ε] ≥ 1− σ2
n(a)/ε2 → 1,

and
P [|Zn(λ)− g(λ)| < 2ε] → 1,
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thus

P [|g(a)− Zn(a)| < 2ε, |Zn(a)− Zn(λ)| < ε, |Zn(λ)− g(λ)| < 2ε] → 1.

The last three inequalities, taken simultaneously, imply

|g(a)− g(λ)| < 5ε,

making g(λ) continuous in B.

Proof of Proposition 22. If σ2
n(λ) → 0, we will have

P [|Zn(λ)− µn(λ)| ≤ ε] ≥ 1− σ2
n(λ)/ε2 → 1

and the first part of the thesis is established.
According to Proposition 21, g(λ) will be continuous in B and so, given

ε > 0, and λ ∈ B, there will be Nt(λ) such that

sup
a∈Nt(λ)

|g(a)− g(λ)| < ε.

Thus, with Nl0(λ) = Nl(λ)
⋂

Nt(λ), we will have

sup
a∈Nl0 (λ)

|g(a)− g(λ)| < ε,

as well as

P

[
sup

a∈Nl0 (λ)
|Zn(a)− Zn(λ)| < ε

]
→ 1,

and so

P

[
sup

a∈Nl0 (λ)
|Zn(a)− g(a)| < 3ε

]
≥

P

[
sup

a∈Nl0 (λ)
|Zn(a)− Zn(λ)| < ε, |Zn(λ)− g(λ)| < ε,

sup
a∈Nl0 (λ)

|g(λ)− g(a)| < ε

]
→ 1
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since, according to the first part of the thesis, Zn(λ) P→ g(λ).
We can find points λj ∈ B such that B ⊆ ⋃J

j=1 Nlj (λj) with λj and lj
chosen such that P [supa∈Nlj

(λj) |Zn(a) − g(a)| < ε] → 1 (see [8, Chapter
5]). Now C is a compact contained in B and so, from the open cover⋃J

j=1 Nlj (λj), we can extract a finite subcover, such that C ⊆ ⋃K
j=1 Nlj (λj).

Since

sup
λ∈C

|Zn(λ)− g(λ)| ≤ max
j=1,...,K



 sup

λ∈Nlj
(λj)

|Zn(λ)− g(λ)|




the thesis follows from ε being arbitrary and from

P

[
sup
λ∈C

|Zn(λ)− g(λ)| < ε

]
≥ P




K⋂

j=1

sup
a∈Nlj

(λj)
|Zn(a)− g(a)| < ε


 → 1.

Proof of Corollary 23. If λn
P→ λ, we have P [λn ∈ N∗

l (λ)] → 1. If
N∗

l (λ) ⊂ B, which can be achieved with l small enough, it will be a compact
contained in B and so, according to Proposition 22

Zn(λ)
Pu(N∗

l (λ))→ g(λ),

and

P [|Zn(λn)− g(λn)| < ε] ≥

P

[
λn ∈ N∗

l (λ), sup
a∈N∗

l
(λ)
|Zn(a)− g(a)| < ε

]
→ 1.

Since, according to Proposition 21, g(λ) is continuous in B the Slutsky
theorem enables us to write g(λn) P→ g(λ). The thesis follows from ε being
arbitrary and from

P [|Zn(λn)− g(λ)| < 2ε] ≥
P [|Zn(λn)− g(λn)| < ε, |g(λn)− g(λ)| < ε] → 1.

Proof of Proposition 24. First, note that the existence of a supre-
mum, λ̃n of Zn(λ), which depends on the random vector y in a measurable
way, is guaranted by [6, page 637].
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Let Zn(λ̃n) = supλ∈C Zn(λ) with

ε = g(λ0)− max
λ∈C−Nl(λ0)

g(λ)(5.1)

and define the event

En = |Zn(λ)− g(λ)| < ε/2, for all λ.

Then

En ⇒ g(λ̃n) > Zn(λ̃n)− ε/2 and En ⇒ Zn(λ0) > g(λ0)− ε/2.(5.2)

But, due to the definition of λ̃n, Zn(λ̃n) ≥ Zn(λ0), being so, the first of the
implications in (5.2) allows us to write

En ⇒ g(λ̃n) ≥ Zn(λ0)− ε/2(5.3)

by adding both sides of the inequalities in the second implication of (5.2)
and (5.3) we obtain

En ⇒ g(λ̃n) > g(λ0)− ε.(5.4)

Therefore, from (5.1) and (5.4) we can conclude that En ⇒ λ̃n ∈ Nl(λ0),
which implies P [λ̃n ∈ Nl(λ0)] ≥ P [En] P→ 1, due to Proposition 21.
Since ε is arbitrary we can conclude that λ̃n

P→ λ0. Finally, define
Zn(λ̂n) = supλ∈B Zn(λ), since

{
Zn(λ0) > sup

λ∈B−C
Zn(λ)

}
⇒ {λ̂n ∈ C}

we have

P

[
Zn(λ0) > sup

λ∈B−C
Zn(λ)

]
≤ P [λ̂n ∈ C].

Proof of Corollary 25. We have by a Taylor expansion

0 = ∂Zn(λ̃n)/∂λ = ∂Zn(λ0)/∂λ + (∂2Zn(a)/∂λ∂λ
′
)(λ̃n − λ0),

where a = λ0 + h(λ̃n − λ0), with h ∈]0, 1[. Now, since λ̃n
P→ λ0 implies

a
P→ λ0, ∂2Zn(a)/∂λ∂λ

′ P→ K thus, see [1, page 111] and [12, page 24],
[∂2Zn(a)/∂λ∂λ

′
]+ P→ K−1,



Likelihood and parametric heteroscedasticity in ... 187

√
n(λ̃n − λ0) = [∂2Zn(a)/∂λ∂λ

′
]+
√

n∂Zn(λ0)/∂λ

L→ N(0,K−1WK−1),

where the convergence in law is due to
√

n∂Zn(λ0)/∂λ
L→ N(0,W ) and to

repetead applications of Slutsky’s theorem (see, for instance, [12, page 122]).

Proof of Corollary 26. From Proposition 21 and Corollary 23 we see
that if λ̃n

P→ λ0, we have

[∂2Zn(λ̃)/∂λ∂λ
′
] P→ K

thus the thesis will follow from Corollary 25, since

∂Zn(λ̂)/∂λ = 0 = ∂Zn(λ0)/∂λ + (∂2Zn(a)/∂λ∂λ
′
)(λ̂n − λ0),

where a = λ0 + h(λ̂n − λ0), with h ∈]0, 1[.
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