ArticleOriginal scientific text

Title

Minimal trees and monophonic convexity

Authors 1, 2, 1

Affiliations

  1. Department of Statistics and Applied Mathematics, University of Almeria, 04120, Almeria, Spain
  2. Department of Mathematics and Statistics., University of Winnipeg, 515 Portage Ave, Winnipeg, R3B 2E9, Canada

Abstract

Let V be a finite set and a collection of subsets of V. Then is an alignment of V if and only if is closed under taking intersections and contains both V and the empty set. If is an alignment of V, then the elements of are called convex sets and the pair (V, ) is called an alignment or a convexity. If S ⊆ V, then the convex hull of S is the smallest convex set that contains S. Suppose X ∈ ℳ. Then x ∈ X is an extreme point for X if X∖{x} ∈ ℳ. A convex geometry on a finite set is an aligned space with the additional property that every convex set is the convex hull of its extreme points. Let G = (V,E) be a connected graph and U a set of vertices of G. A subgraph T of G containing U is a minimal U-tree if T is a tree and if every vertex of V(T)∖U is a cut-vertex of the subgraph induced by V(T). The monophonic interval of U is the collection of all vertices of G that belong to some minimal U-tree. Several graph convexities are defined using minimal U-trees and structural characterizations of graph classes for which the corresponding collection of convex sets is a convex geometry are characterized.

Keywords

minimal trees, monophonic intervals of sets, k-monophonic convexity, convex geometries

Bibliography

  1. M. Atici, Computational complexity of geodetic set, Int. J. Comput. Math. 79 (2002) 587-591, doi: 10.1080/00207160210954.
  2. H.-J. Bandelt and H.M. Mulder, Distance-hereditary graphs, J. Combin. Theory (B) 41 (1986) 182-208, doi: 10.1016/0095-8956(86)90043-2.
  3. J.M. Bilbao and P.H. Edelman, The Shapley value on convex geometries, Discrete Appl. Math 103 (2000) 33-40, doi: 10.1016/S0166-218X(99)00218-8.
  4. A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A survey (SIAM Monogr. Discrete Math. Appl., Philidelphia, 1999).
  5. J. Cáceres and O.R. Oellermann, On 3-Steiner simplicial orderings, Discrete Math. 309 (2009) 5825-5833, doi: 10.1016/j.disc.2008.05.047.
  6. J. Cáceres, O.R. Oellermann and M.L. Puertas, m₃³-convex geometries are A-free, arXiv.org 1107.1048, (2011) 1-15.
  7. M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185-194, doi: 10.1016/j.disc.2004.02.017.
  8. M. Changat, J. Mathew and H.M. Mulder, The induced path function, monotonicity and betweenness, Discrete Appl. Math. 158 (2010) 426-433, doi: 10.1016/j.dam.2009.10.004.
  9. G. Chartrand, L. Lesniak and P. Zhang, Graphs and Digraphs: Fifth Edition (Chapman and Hall, New York, 1996).
  10. F.F. Dragan, F. Nicolai and A. Brandstädt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1999) 119-135, doi: 10.1137/S0895480195321718.
  11. M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Alg. Discrete Meth. 7 (1986) 433-444, doi: 10.1137/0607049.
  12. E. Howorka, A characterization of distance hereditary graphs, Quart. J. Math. Oxford 28 (1977) 417-420, doi: 10.1093/qmath/28.4.417.
  13. B. Jamison and S. Olariu, On the semi-perfect elimination, Adv. in Appl. Math. 9 (1988) 364-376, doi: 10.1016/0196-8858(88)90019-X.
  14. E. Kubicka, G. Kubicki and O.R. Oellermann, Steiner intervals in graphs, Discrete Math. 81 (1998) 181-190, doi: 10.1016/S0166-218X(97)00084-X.
  15. M. Nielsen and O.R. Oellermann, Steiner trees and convex geometries, SIAM J. Discrete Math. 23 (2009) 680-693, doi: 10.1137/070691383.
  16. O.R. Oellermann, Convexity notions in graphs (2006) 1-4. http://www-ma2.upc.edu/seara/wmcgt06/.
  17. O.R. Oellermann and M.L. Puertas, Steiner intervals and Steiner geodetic numbers in distance hereditary graphs, Discrete Math. 307 (2007) 88-96, doi: 10.1016/j.disc.2006.04.037.
  18. M.J.L. Van de Vel, Theory of convex structures (North-Holland, Amsterdam, 1993).
Pages:
685-704
Main language of publication
English
Received
2011-07-11
Accepted
2011-12-20
Published
2012
Exact and natural sciences