ArticleOriginal scientific text

Title

Light edges in 1-planar graphs with prescribed minimum degree

Authors 1, 1

Affiliations

  1. Institute of Mathematics, Faculty of Science, Pavol Jozef Šafárik University, Jesenná 5, 040 01 Košice, Slovakia

Abstract

A graph is called 1-planar if it can be drawn in the plane so that each edge is crossed by at most one other edge. We prove that each 1-planar graph of minimum degree δ ≥ 4 contains an edge with degrees of its endvertices of type (4, ≤ 13) or (5, ≤ 9) or (6, ≤ 8) or (7,7). We also show that for δ ≥ 5 these bounds are best possible and that the list of edges is minimal (in the sense that, for each of the considered edge types there are 1-planar graphs whose set of types of edges contains just the selected edge type).

Keywords

light edge, 1-planar graph

Bibliography

  1. O.V. Borodin, Precise lower bound for the number of edges of minor weight in planar maps, Math. Slovaca 42 (1992) 129-142.
  2. R. Diestel, Graph Theory, Springer, Graduate Texts in Mathematics 173 (2nd ed., Springer-Verlag, New York, 2000).
  3. I. Fabrici and S. Jendrol', An inequality concerning edges of minor weight in convex 3-polytopes, Discuss. Math. Graph Theory 16 (1996) 81-87, doi: 10.7151/dmgt.1024.
  4. I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007) 854-865, doi: 10.1016/j.disc.2005.11.056.
  5. D. Hudák and T. Madaras, On local properties of 1-planar graphs with high minimum degree, Ars Math. Contemp. 4 (2011) 245-254.
  6. D. Hudák and T. Madaras, On local structure of 1-planar graphs of minimum degree 5 and girth 4, Discuss. Math. Graph Theory 29 (2009) 385-400, doi: 10.7151/dmgt.1454.
  7. J. Ivančo, The weight of a graph, Ann. Discrete Math. 51 (1992) 113-116, doi: 10.1016/S0167-5060(08)70614-9.
  8. S. Jendrol' and I. Schiermeyer, On max-min problem concerning weights of edges, Combinatorica 21 (2001) 351-359, doi: 10.1007/s004930100001.
  9. S. Jendrol' and M. Tuhársky, A Kotzig type theorem for non-orientable surfaces, Math. Slovaca 56 (2006) 245-253.
  10. S. Jendrol', M. Tuhársky and H.-J. Voss, A Kotzig type theorem for large maps on surfaces, Tatra Mt. Math. Publ. 27 (2003) 153-162.
  11. S. Jendrol' and H.-J. Voss, Light subgraphs of graphs embedded in plane and projective plane - a survey, Preprint Inst. of Algebra MATH-AL-02-2001, TU Dresden.
  12. S. Jendrol' and H.-J. Voss, Light subgraph.
  13. E. Jucovič, Convex polytopes, Veda Bratislava, 1981 (in Slovak).
  14. A. Kotzig, Contribution to the theory of Eulerian polyhedra, Math. Slovaca 5 (1955) 111-113.
  15. G. Ringel, Ein Sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965) 107-117, doi: 10.1007/BF02996313.
  16. D.P. Sanders, On light edges and triangles in projective planar graphs, J. Graph Theory 21 (1996) 335-342.
Pages:
545-556
Main language of publication
English
Received
2011-03-03
Accepted
2011-09-29
Published
2012
Exact and natural sciences