ArticleOriginal scientific text

Title

On super (a,d)-edge antimagic total labeling of certain families of graphs

Authors 1, 2

Affiliations

  1. Department of Mathematics, D.B. Jain College, Chennai - 600097, Tamil Nadu, India
  2. Department of Mathematics, B.S. Abdur Rahman University, Chennai - 600048, Tamil Nadu, India

Abstract

A (p, q)-graph G is (a,d)-edge antimagic total if there exists a bijection f: V(G) ∪ E(G) → {1, 2,...,p + q} such that the edge weights Λ(uv) = f(u) + f(uv) + f(v), uv ∈ E(G) form an arithmetic progression with first term a and common difference d. It is said to be a super (a, d)-edge antimagic total if the vertex labels are {1, 2,..., p} and the edge labels are {p + 1, p + 2,...,p + q}. In this paper, we study the super (a,d)-edge antimagic total labeling of special classes of graphs derived from copies of generalized ladder, fan, generalized prism and web graph.

Keywords

edge weight, magic labeling, antimagic labeling, ladder, fan graph, prism and web graph

Bibliography

  1. M. Bača and C. Barrientos, Graceful and edge antimagic labelings, Ars Combin. 96 (2010) 505-513.
  2. M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New construction of magic and antimagic graph labeling, Util. Math. 60 (2001) 229-239.
  3. H. Enomoto, A.S. Llodo, T. Nakamigawa and G. Ringel, Super edge magic graphs, SUT J. Math. 34 (1998) 105-109.
  4. R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168, doi: 10.1016/S0012-365X(00)00314-9.
  5. J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6.
  6. F. Harrary, Graph Theory ( Addison-Wesley, 1994).
  7. N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Boston, San Diego, New York, London, 1990).
  8. S.M. Hegde and Sudhakar Shetty, On magic graphs, Australas. J. Combin. 27 (2003) 277-284.
  9. A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1.
  10. R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australian Workshop Combin. Algor., Hunrer Valley, Australia (2000) 179-189.
  11. K.A. Sugeng and M. Miller, Relationship between adjacency matrices and super (a, d)-edge antimagic total labelings of graphs, J. Combin. Math. Combin. Comput. 55 (2005) 71-82.
  12. K.A. Sugeng, M. Miller and M. Bača, Super edge antimagic total labelings, Util. Math. 71 (2006) 131-141.
Pages:
535-543
Main language of publication
English
Received
2011-03-15
Accepted
2011-08-02
Published
2012
Exact and natural sciences