PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Discussiones Mathematicae Graph Theory

2012 | 32 | 3 | 535-543
Tytuł artykułu

### On super (a,d)-edge antimagic total labeling of certain families of graphs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A (p, q)-graph G is (a,d)-edge antimagic total if there exists a bijection f: V(G) ∪ E(G) → {1, 2,...,p + q} such that the edge weights Λ(uv) = f(u) + f(uv) + f(v), uv ∈ E(G) form an arithmetic progression with first term a and common difference d. It is said to be a super (a, d)-edge antimagic total if the vertex labels are {1, 2,..., p} and the edge labels are {p + 1, p + 2,...,p + q}. In this paper, we study the super (a,d)-edge antimagic total labeling of special classes of graphs derived from copies of generalized ladder, fan, generalized prism and web graph.
Słowa kluczowe
EN
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
535-543
Opis fizyczny
Daty
wydano
2012
otrzymano
2011-03-15
poprawiono
2011-08-02
zaakceptowano
2011-09-23
Twórcy
• Department of Mathematics, D.B. Jain College, Chennai - 600097, Tamil Nadu, India
autor
• Department of Mathematics, B.S. Abdur Rahman University, Chennai - 600048, Tamil Nadu, India
Bibliografia
• [1] M. Bača and C. Barrientos, Graceful and edge antimagic labelings, Ars Combin. 96 (2010) 505-513.
• [2] M. Bača, Y. Lin, M. Miller and R. Simanjuntak, New construction of magic and antimagic graph labeling, Util. Math. 60 (2001) 229-239.
• [3] H. Enomoto, A.S. Llodo, T. Nakamigawa and G. Ringel, Super edge magic graphs, SUT J. Math. 34 (1998) 105-109.
• [4] R.M. Figueroa-Centeno, R. Ichishima and F.A. Muntaner-Batle, The place of super edge magic labelings among other classes of labelings, Discrete Math. 231 (2001) 153-168, doi: 10.1016/S0012-365X(00)00314-9.
• [5] J. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. 17 (2010) #DS6.
• [6] F. Harrary, Graph Theory ( Addison-Wesley, 1994).
• [7] N. Hartsfield and G. Ringel, Pearls in Graph Theory (Academic Press, Boston, San Diego, New York, London, 1990).
• [8] S.M. Hegde and Sudhakar Shetty, On magic graphs, Australas. J. Combin. 27 (2003) 277-284.
• [9] A. Kotzig and A. Rosa, Magic valuation of finite graphs, Canad. Math. Bull. 13 (1970) 451-461, doi: 10.4153/CMB-1970-084-1.
• [10] R. Simanjuntak, F. Bertault and M. Miller, Two new (a, d)-antimagic graph labelings, Proc. Eleventh Australian Workshop Combin. Algor., Hunrer Valley, Australia (2000) 179-189.
• [11] K.A. Sugeng and M. Miller, Relationship between adjacency matrices and super (a, d)-edge antimagic total labelings of graphs, J. Combin. Math. Combin. Comput. 55 (2005) 71-82.
• [12] K.A. Sugeng, M. Miller and M. Bača, Super edge antimagic total labelings, Util. Math. 71 (2006) 131-141.
Typ dokumentu
Bibliografia
Identyfikatory