ArticleOriginal scientific text

Title

3-transitive digraphs

Authors 1

Affiliations

  1. Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F., C.P. 04510, México

Abstract

Let D be a digraph, V(D) and A(D) will denote the sets of vertices and arcs of D, respectively. A digraph D is 3-transitive if the existence of the directed path (u,v,w,x) of length 3 in D implies the existence of the arc (u,x) ∈ A(D). In this article strong 3-transitive digraphs are characterized and the structure of non-strong 3-transitive digraphs is described. The results are used, e.g., to characterize 3-transitive digraphs that are transitive and to characterize 3-transitive digraphs with a kernel.

Keywords

digraph, kernel, transitive digraph, quasi-transitive digraph, 3-transitive digraph, 3-quasi-transitive digraph

Bibliography

  1. J. Bang-Jensen and G. Gutin, Digraphs. Theory, Algorithms and Applications (Springer-Verlag Berlin Heidelberg New York, 2002).
  2. J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161, doi: 10.1002/jgt.3190200205.
  3. J. Bang-Jensen, J. Huang and E. Prisner, In-tournament digraphs, J. Combin. Theory (B) 59 (1993) 267-287, doi: 10.1006/jctb.1993.1069.
  4. C. Berge, Graphs (North-Holland, Amsterdam New York, 1985).
  5. E. Boros and V. Gurvich, Perfect graphs, kernels and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354, doi: 10.1016/j.disc.2005.12.031.
  6. V. Chvátal, On the computational complexity of finding a kernel, Report No. CRM-300, 1973, Centre de recherches mathématiques, Université de Montréal.
  7. R. Diestel, Graph Theory 3rd Edition (Springer-Verlag Berlin Heidelberg New York, 2005).
  8. H. Galeana-Sánchez and I.A. Goldfeder, A classification of arc-locally semicomplete digraphs, Publicaciones Preliminares del Instituto de Matemáticas, UNAM 859 (2010).
  9. H. Galeana-Sánchez, I.A. Goldfeder and I. Urrutia, On the structure of 3-quasi-transitive digraphs, Discrete Math. 310 (2010) 2495-2498, doi: 10.1016/j.disc.2010.06.008.
  10. H. Galeana-Sánchez and C. Hernández-Cruz, k-kernels in k-transitive and k-quasi-transitive digraphs, Submitted (2010).
  11. A. Ghouila-Houri, Caractérization des graphes non orientés dont on peut orienter les arrêtes de manière à obtenir le graphe d'une relation d'rdre, Comptes Rendus de l'Académie des Sciences Paris 254 (1962) 1370-1371.
  12. J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton University Press, Princeton, 1953).
  13. S. Wang and R. Wang, The structure of arc-locally in-semicomplete digraphs, Discrete Math. 309 (2009) 6555-6562, doi: 10.1016/j.disc.2009.06.033.
  14. S. Wang and R. Wang, Independent sets and non-augmentable paths in arc-locally in-semicomplete digraphs and quasi-arc-transitive digraphs, Discrete Math. 311 (2010) 282-288, doi: 10.1016/j.disc.2010.11.009.
Pages:
205-219
Main language of publication
English
Received
2011-02-16
Accepted
2011-04-02
Published
2012
Exact and natural sciences