ArticleOriginal scientific text

Title

Intersection graph of gamma sets in the total graph

Authors 1, 2

Affiliations

  1. Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli- 627 012, Tamil Nadu, India
  2. Department of Mathematics Manonmaniam Sundaranar University, Tirunelveli- 627 012, Tamil Nadu, India

Abstract

In this paper, we consider the intersection graph IΓ() of gamma sets in the total graph on ℤₙ. We characterize the values of n for which IΓ() is complete, bipartite, cycle, chordal and planar. Further, we prove that IΓ() is an Eulerian, Hamiltonian and as well as a pancyclic graph. Also we obtain the value of the independent number, the clique number, the chromatic number, the connectivity and some domination parameters of IΓ().

Keywords

total graph, gamma sets, intersection graph, Hamiltonian, coloring, connectivity, domination number

Bibliography

  1. S. Akbari, D. Kiani, F. Mohammadi and S. Moradi, The total graph and regular graph of a commutative ring, J. Pure Appl. Algebra 213 (2009) 2224-2228, doi: 10.1016/j.jpaa.2009.03.013.
  2. D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra 320 (2008) 2706-2719, doi: 10.1016/j.jalgebra.2008.06.028.
  3. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999) 434-447, doi: 10.1006/jabr.1998.7840.
  4. N. Ashrafia, H.R. Maimanibc, M.R. Pournakicd and S. Yassemie, Unit graphs associated with rings, Comm. Algebra 38 (2010) 2851?-2871, doi: 10.1080/00927870903095574.
  5. R. Balakrishnan and K. Ranganathan, A text book of Graph Theory, (Springer, 2000).
  6. I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Electronic Notes in Discrete Math. 23 (2005) 23-32, doi: 10.1016/j.endm.2005.06.104.
  7. I. Chakrabarty, S. Ghosh, T.K. Mukherjee and M.K. Sen, Intersection graphs of ideals of rings, Discrete Math. 309 (2009) 5381-5392, doi: 10.1016/j.disc.2008.11.034.
  8. G. Chartrand and L. Lesniak, Graphs and Digraphs, (Chapman & Hall/CRC., 2000).
  9. G. Chartrand and P. Zhang, Chromatic Graph Theory, (CRC Press, 2009).
  10. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamental of Domination in Graphs, (Marcel Dekker Inc., 1998).
  11. H.R. Maimani, M. Salimi, A. Sattari and S. Yassemi, Comaximal graph of commutative rings, J. Algebra 319 (2008) 1801-1808, doi: 10.1016/j.jalgebra.2007.02.003.
  12. T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, (SIAM Monographs on Discrete Math. Applications., 1999), doi: 10.1137/1.9780898719802.
  13. T. Tamizh Chelvam and T. Asir, A note on total graph of ℤₙ, J. Discrete Math. Sci. Cryptography 14 (2011) 1-7.
  14. T. Tamizh Chelvam and T. Asir, Domination in the total graph on ℤₙ, J. Combin. Math. Combin. Comput., submitted.
  15. A.T. White, Graphs, Groups and Surfaces, (North-Holland, Amsterdam., 1973).
Pages:
341-356
Main language of publication
English
Received
2011-02-04
Accepted
2011-06-17
Published
2012
Exact and natural sciences