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Abstract

We prove that if G is a graph of order 5k and the minimum degree of G
is at least 3k then G contains k disjoint cycles of length 5.
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1. Introduction and Notation

A set of graphs is said to be disjoint if no two of them have any common vertex.
Corrádi and Hajnal [3] investigated the maximum number of disjoint cycles in
a graph. They proved that if G is a graph of order at least 3k with minimum
degree at least 2k, then G contains k disjoint cycles. In particular, when the
order of G is exactly 3k, then G contains k disjoint triangles. Erdős and Faudree
[5] conjectured that if G is a graph of order 4k with minimum degree at least
2k, then G contains k disjoint cycles of length 4. This conjecture has been
confirmed by Wang [8]. El-Zahar [4] conjectured that if G is a graph of order
n = n1 + n2 + · · · + nk with ni ≥ 3 (1 ≤ i ≤ k) and the minimum degree of G
is at least ⌈n1/2⌉ + ⌈n2/2⌉ + · · · + ⌈nk/2⌉, then G contains k disjoint cycles of
lengths n1, n2, . . . , nk, respectively. He proved this conjecture for k = 2. When
n1 = n2 = · · · = nk = 3, this conjecture holds by Corrádi and Hajnal’s result.
When n1 = n2 = · · · = nk = 4, El-Zahar’s conjecture reduces to the above
conjecture of Erdős and Faudree. Abbasi [1] announced a solution to El-Zahar’s
conjecture for very large n.

In this paper, we develop a constructive method to show that El-Zahar’s
conjecture is true for all n = 5k with ni = 5 (1 ≤ i ≤ k).

http://dx.doi.org/10.7151/dmgt.1605
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Theorem 1. If G is a graph of order 5k and the minimum degree of G is at least

3k, then G contains k disjoint cycles of length 5.

We shall use the terminology and notation from [2] except as indicated. Let G
be a graph. Let u ∈ V (G). The neighborhood of u in G is denoted by N(u).
Let H be a subgraph of G or a subset of V (G) or a sequence of distinct vertices
of G. We define N(u,H) to be the set of neighbors of u contained in H, and
let e(u,H) = |N(u,H)|. Clearly, N(u,G) = N(u) and e(u,G) is the degree of
u in G. If X is a subgraph of G or a subset of V (G) or a sequence of distinct
vertices of G, we define N(X,H) = ∪uN(u,H) and e(X,H) =

∑
u e(u,H) where

u runs over all the vertices in X. Let x and y be two distinct vertices. We define
I(xy,H) to be N(x,H) ∩ N(y,H) and let i(xy,H) = |I(xy,H)|. Let each of
X1, X2, . . . , Xr be a subgraph of G or a subset of V (G). We use [X1, X2, . . . , Xr]
to denote the subgraph of G induced by the set of all the vertices that belong
to at least one of X1, X2, . . . , Xr. We use Ci to denote a cycle of length i for all
integers i ≥ 3, and use Pj to denote a path of order j for all integers j ≥ 1. For
a cycle C of G, a chord of C is an edge of G− E(C) which joins two vertices of
C, and we use τ(C) to denote the number of chords of C in G. Furthermore, if
x ∈ V (C), we use τ(x,C) to denote the number of chords of C that are incident
with x. For each integer k ≥ 3, a k-cycle is a cycle of length k. If S is a set of
subgraphs of G, we write G ⊇ S.

For an integer k ≥ 1 and a graph G′, we use kG′ to denote a set of k disjoint
graphs isomorphic to G′. If G1, . . . , Gr are r graphs and k1, . . . , kr are r positive
integers, we use k1G1 ⊎ · · · ⊎ krGr to denote a set of k1 + · · ·+ kr disjoint graphs
which consist of k1 copies of G1, . . . , kr−1 copies of Gr−1 and kr copies of Gr. For
two graphs H1 and H2, the union of H1 and H2 is still denoted by H1 ∪ H2 as
usual, that is, H1 ∪H2 = (V (H1) ∪ V (H2), E(H1) ∪ E(H2)). Let each of Y and
Z be a subgraph of G, or a subset of V (G), or a sequence of distinct vertices
of G. If Y and Z do not have any common vertices, we define E(Y, Z) to be
the set of all the edges of G between Y and Z. Clearly, e(Y, Z) = |E(Y, Z)|. If
C = x1x2 . . . xrx1 is a cycle, then the operations on the subscripts of the xi’s will
be taken by modulo r in {1, 2, . . . , r}.

We use B to denote a graph of order 5 and size 6 such that B has two edge-
disjoint triangles. We use F to denote a graph of order 5 and size 5 such that F
has a vertex of degree 1 and a 4-cycle. Let F1 be the graph of order 5 obtained
from F by adding a new edge to F such that the new edge joins the two vertices
of F whose degrees in F are 2. Let F2 be the graph of order 5 and size 7 obtained
from K2,3 by adding a new edge to K2,3 such that F2 has two adjacent vertices
of degree 4. We use K+

4
to denote the graph of order 5 and size 7 such that K+

4

has a vertex of degree 1. Finally, we use K−
5

to denote a graph of order 5 with 9
edges.

Let {H,L1, . . . , Lt} be a set of t+1 disjoint subgraphs of G such that Li
∼= C5
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for i = 1, . . . , t. We say that {H,L1, . . . , Lt} is optimal if for any t + 1 disjoint
subgraphs H ′, L′

1, . . . , L
′
t in [H,L1, . . . , Lt] with H ′ ∼= H and L′

i
∼= C5(1 ≤ i ≤ t),

we have that
∑t

i=1
τ(L′

i) ≤
∑t

i=1
τ(Li). Let L be a 5-cycle of G andH a subgraph

of order 5 in G. We write H ≥ L if H has a 5-cycle L′ such that τ(L′) ≥ τ(L).
Moreover, if τ(L′) > τ(L), we write H > L.

Let L be a 5-cycle of G. Let u ∈ V (L) and x0 ∈ V (G) − V (L). We write
x0 → (L, u) if [L − u + x0] ⊇ C5. Moreover, if [L − u + x0] ≥ L then we
write x0 ⇒ (L, u) and if [L − u + x0] > L then we write x0

a
→ (L, u). In

addition, if it does not hold that x0
a
→ (L, u) then we write x0

na
→ (L, u). Clearly,

x0 ⇒ (L, u) when x0
a
→ (L, u). If x0 → (L, u) for all u ∈ V (L) then we write

x0 → L. Similarly, we define x0 ⇒ L and x0
a
→ L. If [L− u+ x0] ⊇ B, we write

x0
z
→ (L, u).

Let P be a path of order at least 2 or a sequence of at least two distinct
vertices in G− V (L+ x0). Let X be a subset of V (G)− V (L+ x0) with |X| ≥ 2.
We write x0 → (L, u;P ) if x0 → (L, u) and u is adjacent to the two end vertices
of P . In this case, if P is a path of order 4, then [x0, L, P ] ⊇ 2C5. We write
x0 → (L, u;X) if x0 → (L, u;xy) for some {x, y} ⊆ X with x 6= y. We write x0 →
(L;P ) if x0 → (L, u;P ) for some u ∈ V (L) and x0 → (L;X) if x0 → (L, u;X) for
some u ∈ V (L). Similarly, we define the notation x0

z
→ (L;P ) and x0

z
→ (L;X).

If it does not hold that x0
z
→ (L;P ), we write x0

nz
→ (L;P ). If it does not hold

that x0
z
→ (L;X), we write x0

nz
→ (L;X).

2. Sketch of the Proof of Theorem 1 and Preliminary Lemmas

2.1. Sketch of the proof of Theorem 1

Let G be a graph of order 5k with minimum degree at least 3k. Suppose, by way
of contradiction, that G 6⊇ kC5. We may assume that G is maximal, i.e., G+xy ⊇
kC5 for each pair of non-adjacent vertices x and y of G. Thus G ⊇ P5⊎(k−1)C5.
Our first goal is to show that G ⊇ K+

4
⊎ (k − 1)C5. This will be accomplished

through a series of lemmas in Section 2.2. Say G ⊇ {D,L1, . . . , Lk−1} with
D ∼= K+

4
and Li

∼= C5(1 ≤ i ≤ k). Let x0 ∈ V (D) with e(x0, D) = 1 and let
Q = D − x0. We shall estimate the upper bound on 2e(x0, G) + e(Q,G) ≥ 18k.
This needs an estimation on each 2e(x0, Li) + e(Q,Li). The idea is to show
that if e(x0, Li) is increasing then e(Q,Li) is decreasing for otherwise [D,Li] ⊇
2C5, a contradiction. This is accomplished in Lemma 3.3. It turns out that
2e(x0, G) + e(Q,G) < 18k, a contradiction.

2.2. Preliminary lemmas

Our proof of Theorem 1 will use the following lemmas. Let G = (V,E) be a given
graph in the following.
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Lemma 2.1. The following statements hold:

(a) If P ′ and P ′′ are two disjoint paths of G such that |V (P ′)| = 2, 2 ≤
|V (P ′′)| ≤ 3 and e(P ′, P ′′) ≥ 3, then [P ′, P ′′] ⊇ C4.

(b) If x and y are two distinct vertices and P is a path of order 3 in G such that

{x, y}∩V (P ) = ∅ and e(xy, P ) ≥ 5, then [x, y, P ] contains a 5-cycle C such

that τ(C) ≥ 2.

(c) If D is a graph of order 5 with e(D) ≥ 7, then D ⊇ C5, unless D ∼= K+
4

or

D ∼= F2.

(d) If R is a subset of V (G) and L is a 5-cycle of G − R such that |R| = 4
and e(R,L) ≥ 13, then u → (L;R − {u}) for some u ∈ R, or there exist

two labellings R = {y1, y2, y3, y4} and L = b1b2b3b4b5b1 such that N(y1, L) =
N(y2, L) = {b1, b2, b3, b4}, N(y3, L) = {b1, b5, b4} and N(y4, L) = {b1, b4}.

Proof. It is easy to check (a), (b) and (c). To prove (d), we suppose, for a
contradiction, that u 6→ (L;R − {u}) for all u ∈ R. Let R = {y1, y2, y3, y4} be
such that e(y1, L) ≥ e(yi, L) for all yi ∈ R. As e(R,L) ≥ 13, e(y1, L) ≥ 4 and
there exists b ∈ V (L) such that e(b, R − {y1}) ≥ 2. If e(y1, L) = 5 then y1 →
(L, b;R − {y1}), a contradiction. Hence we may assume that L = b1b2b3b4b5b1
and e(y1, b1b2b3b4) = 4. Thus e(bi, R − {y1}) ≤ 1 for i ∈ {2, 3, 5}. Then 6 ≥
e(b1b4, R − {y1}) ≥ 13 − 4 − 3 = 6. It follows that e(b1b4, R − {y1}) = 6 and
e(bi, R − {y1}) = 1 for i ∈ {2, 3, 5}. W.l.o.g., say b2y2 ∈ E. Then e(b3, y3y4) = 0
as y2 6→ (L, b3;R − {y2}). Hence b3y2 ∈ E. W.l.o.g., say b5y3 ∈ E. Thus (d)
holds.

Lemma 2.2. Let D and L be disjoint subgraphs of G such that D ∼= B and

L ∼= C5. Say D = x0x1x2x0x3x4x0. Suppose that e(D − x0, L) ≥ 13. Then

[D,L] ⊇ 2C5.

Proof. Let H = [D,L]. On the contrary, suppose H 6⊇ 2C5. Then it is easy to
see that

xi 6→ (L;xjxs) and xi 6→ (L;xjxt) for

{{i, j}, {s, t}} = {{1, 2}, {3, 4}}.(1)

Let R = {x1, x2, x3, x4}. W.l.o.g., say e(x1, L) ≥ e(xi, L) for all xi ∈ R. Then
e(x1, L)≥4. First, assume that e(x1, L)=5. By (1), I(x2x3, L)= I(x2x4, L)=∅.
Thus e(x2x3, L) ≤ 5 and e(x2x4, L) ≤ 5. Since e(R,L) ≥ 13, it follows that
e(x4, L) ≥ 3 and e(x3, L) ≥ 3. As x3 6→ (L;x1x4), we see that e(x3, L) = 3.
Similarly, e(x4, L) = 3. Then e(x2, L) = 2. As x2 6→ (L;x1x3), we see that the
two vertices ofN(x2, L) must be consecutive on L. SayN(x2, L) = {a1, a2}. Then
[x0, x1, x2, a1, a2] ⊇ C5 and [x3, x4, a3, a4, a5] ⊇ C5, a contradiction. Therefore
e(x1, L) = 4. Say N(x1, L) = {a1, a2, a3, a4}. By (1), I(x2xj , {a2, a3, a5}) = ∅ for
j ∈ {3, 4}. Thus e(x2xj , L) ≤ 7 for j ∈ {3, 4} and so e(xj , L) ≥ 2 for j ∈ {3, 4}.
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First, assume e(x2xj , L) = 7 for some j ∈ {3, 4}. Say e(x2x3, L) = 7. Then
I(x2x3, L) = {a1, a4} and e(ai, x2x3) = 1 for i ∈ {2, 3, 5}. If e(x4, a2a3) ≥ 1,
say w.l.o.g. x4a2 ∈ E, then [a1, a2, x4, x0, x3] ⊇ C5 and so x2a5 6∈ E as H 6⊇
2C5. Consequently, x3a5 ∈ E and so H ⊇ 2C5 = {x3a5a1a2x4x3, x1x0x2a4a3x1},
a contradiction. Hence e(x4, a2a3) = 0 and so e(x4, a1a4) ≥ 1. W.l.o.g., say
x4a1 ∈ E. Then [x3, x4, a1, a5, a4] ⊇ C5 and so e(x2, a2a3) = 0 as H 6⊇ 2C5.
Thus e(x3, a2a3) = 2. As e(x3, L) ≤ e(x1, L) = 4, x3a5 6∈ E. Thus x2a5 ∈ E,
and consequently, H ⊇ 2C5 = {x3x4a1a2a3x3, x1x0x2a5a4x1}, a contradiction.
Therefore e(x2xj , L) ≤ 6 for j ∈ {3, 4} and so e(xj , L) ≥ 3 for j ∈ {3, 4}.
Similarly, if e(x3, L)=4 then e(x1x4, L) ≤ 6, a contradiction. Hence e(x3, L) = 3.
Similarly, e(x4, L) = 3. Then e(x2, L) = 3 as e(R,L) ≥ 13. Assume x2a5 ∈ E.
Then e(a5, x3x4) = 0 by (1). As e(x3x4, L) = 6, either e(x3x4, a1a2) ≥ 3 or
e(x3x4, a3a4) ≥ 3. Say w.l.o.g. the former holds. Then [x3, x0, x4, a1, a2] ⊇ C5

and [x1, x2, a5, a4, a3] ⊇ C5, a contradiction. Hence x2a5 6∈ E. As e(x2, L) =
3, either e(x2, a1a3) = 2 or e(x2, a2a4) = 2. W.l.o.g., say the former holds.
As x2 6→ (L;x1xj) for j ∈ {3, 4}, e(a2, x3x4) = 0. As e(x3x4, L) = 6, either
e(x3x4, a3a5) ≥ 3 or e(x3x4, a1a4) ≥ 3. Thus either [x3, x4, a3, a4, a5] ⊇ C5 or
[x3, x4, a4, a5, a1] ⊇ C5. In each situation, we see that H ⊇ 2C5, a contradiction.

Lemma 2.3. Let P and L be disjoint subgraphs of G such that P ∼= P5 and

L ∼= C5. Suppose that {P,L} is optimal, e(P,L) ≥ 16 and [P,L] 6⊇ 2C5. Then

[P,L] ⊇ F ⊎ C5.

Proof. Say P = x1x2x3x4x5 with e(x1, L) ≥ e(x5, L) and L = a1a2a3a4a5a1.
Then e(x1, L) ≥ 1. Let H = [P,L]. On the contrary, suppose H 6⊇ F ⊎ C5.
Assume first that e(x1, L) = 1. Say x1a1 ∈ E. As e(P,L) ≥ 16 and e(x5, L) ≤ 1,
e (x2x3x4, L) ≥ 14. Thus e (x2, a3a4) ≥ 1. W.l.o.g., say x2a3 ∈ E. Then
[x1, x2, a3, a2, a1] ⊇ C5. As e(x3x4, L) ≥ 14− e(x2, L) ≥ 9, e(x3x4, a4a5) ≥ 3. By
Lemma 2.1(a), [x5, x4, x3, a4, a5] ⊇ F and so H ⊇ F ⊎C5, a contradiction. Hence
e(x1, L) ≥ 2.

As e(P,L) ≥ 16, I(x2x4, L) 6= ∅ or I(x3x5, L) 6= ∅. Therefore x1 6→ L for
otherwise H ⊇ F ⊎C5. Hence e(x1, L) ≤ 4. We divide the proof into the following
cases.

Case 1. e(x1, L) = 4. Say N(x1, L) = {a1, a2, a3, a4}. Then [L−ai+x1] ⊇ F
for all ai ∈ V (L). Thus I(x2x5, L) = ∅ as H 6⊇ F ⊎C5. As x1 6→ L, τ(a5, L) = 0.
Then x1

a
→ (L, a5). By the optimality of {P,L}, [P − x1 + a5] 6⊇ P5 and so

e(a5, x2x5) = 0 and e(a5, x3x4) ≤ 1. Thus e(x2x5, L) ≤ 4 and so e(x3x4, L) ≥ 8.
Suppose e(x2, L) ≥ 1. Then e(x2, a2a4) ≥ 1 or e(x2, a1a3) ≥ 1. W.l.o.g., say
the former holds. Then [x1, x2, a2, a3, a4] ⊇ C5. As H 6⊇ F ⊎ C5 and by Lemma
2.1(a), we see that e(x3x4, a1a5) ≤ 2. It follows that e(x3x4, a2a3a4) = 6 and
e(x2x5, L − a5) = 4. Thus e(a2, x2x5) > 0. Then [P − x1 + a2] ⊇ F . As x1 →
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(L, a2),H ⊇ F⊎C5, a contradiction. Hence e(x2, L) = 0. Similarly, if e(x5, L) = 4
then e(x4, L) = 0 and so e(P,L) < 16, a contradiction. Hence e(x5, L) ≤ 3 and
so e(x3x4, L) ≥ 9. As e(a5, x3x4) ≤ 1, it follows that e(x3x4, L − a5) = 8,
e(a5, x3x4) = 1 and e(x5, L) = 3. Then e(ai, x3x5) = 2 for some i ∈ {2, 3} and so
H ⊇ F ⊎ C5 as x1 → (L, ai), a contradiction.

Case 2. e(x1, L) = 3. Then e(x5, L) ≤ 3. First, suppose that the three ver-
tices in N(x1, L) are not consecutive on L. Say N(x1, L) = {a1, a2, a4}. Clearly,
I(x2x5, L) ⊆ {a4} since H 6⊇ 2C5 and H 6⊇ F ⊎ C5. Hence e(x2x5, L) ≤ 6.
If x2a4 ∈ E then [x1, x2, a1, a5, a4] ⊇ C5. As H 6⊇ F ⊎ C5, e(x3x4, a2a3) ≤
2. Similarly, [x1, x2, a2, a3, a4] ⊇ C5 and so e(x3x4, a1a5) ≤ 2. Consequently,
e(P,L) ≤ 15, a contradiction. Hence x2a4 6∈ E. Thus e(x2x5, L) ≤ 5 and so
e(x3x4, L) ≥ 8. If e(x2, L) > 0, then [x1, x2, P

′] ⊇ C5 where P ′ = L − {ai, ai+1}
for some {ai, ai+1} ⊆ V (L). As H 6⊇ F ⊎ C5, e(x3x4, aiai+1) ≤ 2. Con-
sequently, e(x3x4, P

′) = 6, e(x3x4, aiai+1) = 2 and e(x2x5, L) = 5. Hence
e(at, x2x5) = 1 for all at ∈ V (L). Thus [P − x1 + aj ] ⊇ F and x1 → (L, aj)
where aj ∈ V (P ′) ∩ {a3, a5}, a contradiction.

Therefore e(x2, L) = 0 and so e(x3x4, L) = 10 and e(x5, L) = 3. Con-
sequently, H ⊇ 2C5 or H ⊇ F ⊎ C5, a contradiction. Therefore the three
vertices in N(x1, L) are consecutive on L. Say N(x1, L) = {a1, a2, a3}. Then
I(x2x5, L) ⊆ {a1, a3} since H 6⊇ 2C5 and H 6⊇ F ⊎ C5. Thus e(x2x5, L) ≤ 7
and so e(x3x4, L) ≥ 6. Assume e(x2, a4a5) ≥ 1. Say w.l.o.g. x2a4 ∈ E.
Then [x1, x2, a2, a3, a4] ⊇ C5 and [x1, x2, a1, a5, a4] ⊇ C5. As H 6⊇ F ⊎ C5

and by Lemma 2.1(a), e(x3x4, a1a5) ≤ 2 and e(x3x4, a2a3) ≤ 2. It follows
that e(x2x5, L) = 7, e(x3x4, L) = 6, e(a4, x3x4) = 2, and e(x2x5, a1a3) = 4.
Then [x1, x5, a1, a2, a3] ⊇ C5 and [a5, a4, x2, x3, x4] ⊇ F , a contradiction. Hence
e(x2, a4a5) = 0 and so e(x2, L) ≤ 3. Thus e(x3x4, L) ≥ 7. Assume e(x2, a1a3) ≥
1. Then [x1, x2, a1, a2, a3] ⊇ C5. Then e(x3x4, a4a5) ≤ 2 as H 6⊇ F ⊎ C5. Thus
e(x3x4, a1a2a3) ≥ 5. As H 6⊇ F ⊎ C5 and x1 → (L, a2), we have e(a2, x2x4) ≤ 1.
As e(P,L) ≥ 16, it follows that e(a2, x2x4) = 1, e(x3, a1a2a3) = 3, e(x3x4, a4a5) =
2 and e(x5, L) = 3. As H 6⊇ F ⊎ C5 and x1 → (L, a2), we see that x5a2 6∈ E.
Then e(x5, a4a5) ≥ 1 and so [x3, x4, x5, a4, a5] ⊇ F , a contradiction. Hence
e(x2, a1a3) = 0 and so e(x2, L) ≤ 1. If e(x5, L) = 3 then we also have e(x4, L) ≤ 1
by the symmetry and so e(P,L) ≤ 13, a contradiction. Hence e(x5, L) ≤ 2. It fol-
lows that so e(x3x4, L) = 10, e(x2, L) = 1 and e(x5, L) = 2. Thus e(a2, x2x4) = 2
and so H ⊇ F ⊎ C5, a contradiction.

Case 3. e(x1, L) = 2. Then e(x5, L) ≤ 2 and e(x3x4, L) ≥ 7. First, suppose
that the two vertices in N(x1, L) are not consecutive on L. Say N(x1, L) =
{a1, a3}. Assume e(x2, a1a3) ≥ 1. Then [x1, x2, a1, a2, a3] ⊇ C5. As H 6⊇ F ⊎
C5 and by Lemma 2.1(a), e(x3x4, a4a5) ≤ 2. Hence e(x3x4, a1a2a3) ≥ 5. As
x1 → (L, a2) and H 6⊇ F ⊎ C5, e(a2, x2x4) ≤ 1. As e(P,L) ≥ 16, it follows
that e(a2, x2x4) = 1, e(x5, L) = 2, e(x2, L − a2) = 4, e(x3, a1a2a3) = 3 and
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e(x3x4, a4a5) = 2. As [x3, x4, x5, a4, a5] 6⊇ F , e(x5, a4a5) = 0 by Lemma 2.1(a).
As x1 → (L, a2) and H 6⊇ F ⊎ C5, a2x5 6∈ E. Thus e(x5, a1a3) = 2. It follows
that [x1, x2, a1, a5, a4] ⊇ C5 and [x3, x4, x5, a3, a2] ⊇ C5, a contradiction. Hence
e(x2, a1a3) = 0. Thus e(x3x4, L) ≥ 9. As e(x3x4, L) ≤ 10, e(x2, L) ≥ 2 and
so e(x2, a4a5) ≥ 1. Say w.l.o.g. x2a4 ∈ E. Then [x1, x2, a4, a5, a1] ⊇ C5. As
H 6⊇ F ⊎ C5 and by Lemma 2.1(a), e(x3x4, a2a3) ≤ 2 and so e(x3x4, L) ≤ 8,
a contradiction. Therefore the two vertices in N(x1, L) are consecutive on L.
Say N(x1, L) = {a1, a2}. Assume x2a4 ∈ E. Then [x1, x2, a4, a5, a1] ⊇ C5 and
[x1, x2, a4, a3, a2] ⊇ C5. Thus e(x3x4, a2a3) ≤ 2 and e(x3x4, a1a5) ≤ 2 since
H 6⊇ F ⊎ C5. Hence e(x3x4, L) ≤ 6, a contradiction. Hence x2a4 6∈ E. Thus
e(x3x4, L) ≥ 8. Assume e(x2, a3a5) ≥ 1. Say x2a3 ∈ E. Then [x1, x2, a3, a2, a1] ⊇
C5 and so e(x3x4, a4a5) ≤ 2. It follows that e(x3x4, a1a2a3) = 6, e(x3x4, a4a5) =
2, e(x2, L − a4) = 4 and e(x5, L) = 2. As x2a5 ∈ E and by the symmetry, we
also have e(x3x4, a5a1a2) = 6. Then H ⊇ F ⊎ C5, a contradiction. Therefore
e(x2, a3a5) = 0. It follows that e(x2, a1a2) = 2, e(x3x4, L) = 10 and e(x5, L) = 2.
Then H ⊇ F ⊎ C5, a contradiction

Lemma 2.4. Let D and L be disjoint subgraphs of G with D ∼= F2 and L ∼= C5.

Let R be the set of the three vertices of D with degree 2 in D. If e(R,L) ≥ 10,
then [D,L] ⊇ F1 ⊎ C5.

Proof. As e(R,L) ≥ 10, e(u, L) ≥ 4 for some u ∈ R. Thus u → (L, v) for some
v ∈ V (L) with e(v,R− {u}) ≥ 1. Clearly, [D − u+ v] ⊇ F1.

Lemma 2.5. Let D and L be disjoint subgraphs of G with D ∼= F and L ∼= C5.

Suppose that {D,L} is optimal and e(D,L) ≥ 16. Then [D,L] contains one of

F1⊎C5, F2⊎C5, B⊎C5 and 2C5, or there exist two labellings D = x0x1x2x3x4x1
and L = a1a2a3a4a5a1 such that e(x0, L) = 0, e(x1x3, L) = 10, N(x2, L) =
N(x4, L) = {a1, a2, a4}, τ(L) = 4 and a3a5 6∈ E.

Proof. Say H = [D,L]. Suppose that H does not contain any of F1 ⊎ C5,
F2 ⊎ C5, B ⊎ C5 and 2C5. We shall prove that there exist two labellings of
D and L satisfying the property in the lemma. Say D = x0x1x2x3x4x1 and
L = a1a2a3a4a5a1. Then x2x4 6∈ E. Let Q = x1x2x3x4x1. If e(x0, L) ≥ 4, then
for each ai ∈ V (L), [L−ai+x0] ⊇ C5 or [L−ai+x0] ⊇ F1. Thus [Q+ai] 6⊇ C5 and
so e(ai, Q) ≤ 2 for each ai ∈ V (L). Consequently, e(D,L) ≤ 15, a contradiction.
Therefore e(x0, L) ≤ 3. We divide the proof into the following cases.

Case 1. e(x0, L) = 0. First, suppose that e(x2, L) ≥ 4 or e(x4, L) ≥ 4. Say,
{a1, a2, a3, a4}⊆N(x2, L). Assume e(x1, a2a3) ≥ 1. Say w.l.o.g. x1a2 ∈ E.

Then [x0, x1, x2, a2, a1] ⊇ F1 and [x0, x1, x2, a2, a3] ⊇ F1. As H 6⊇ F1 ⊎ C5,
we see that e(x3x4, a3a5) ≤ 2 and e(x3x4, a1a4) ≤ 2. As e(Q,L) ≥ 16, it follows
that e(x1x2, L) = 10 and e(a2, x3x4) = 2. Thus [x0, x1, a2, x3, x4] ⊇ F1 and x2 →
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(L, a2), a contradiction. Hence e(x1, a2a3) = 0. As e(x1, L) ≥ 1, this argument
implies that e(x2, L) 6= 5. Similarly, e(x4, L) 6= 5. As e(Q,L) ≥ 16, it follows that
e(x1, a1a5a4) = 3, e(x3, L) = 5 and e(x4, L) = 4. Then [x0, x1, x2, a1, a2] ⊇ F1

and [x3, x4, a3, a4, a5] ⊇ C5, a contradiction. Hence e(x2, L) ≤ 3 and e(x4, L) ≤ 3.
Consequently, e(x1x3, L) = 10, e(x2, L) = e(x4, L) = 3. Then x2 is adjacent two
consecutive vertices of L. Say w.l.o.g. e(x2, a1a2) = 2. Then [x0, x1, x2, a1, a2] ⊇
F1. Thus e(x4, a3a5) = 0 as H 6⊇ F1 ⊎ C5. Hence e(x4, a1a2a4) = 3. Similarly,
e(x2, a1a2a4) = 3. Clearly, [D − x3 + ai] ⊇ F for i ∈ {1, 2}. As {D,L} is
optimal, x3

na
→ (L, ai) for i ∈ {1, 2}. This implies that τ(a1, L) = τ(a2, L) = 2.

As [x0, x1, x2, a1, a2] ⊇ F1, [x3, x4, a3, a4, a5] 6⊇ C5. This implies that a3a5 6∈ E.
Therefore these two labellings satisfy the property described in the lemma.

Case 2. e(x0, L) = 1. Then e(Q,L) ≥ 15. Say x0a1 ∈ E. First, suppose
e(x1, a3a4) ≥ 1. Say w.l.o.g. x1a3 ∈ E. Then [x1, x0, a1, a2, a3] ⊇ C5. By
Lemma 2.1(c), we have e(a4a5, x2x3x4) ≤ 3 since H 6⊇ 2C5, H 6⊇ F1 ⊎ C5 and
H 6⊇ F2 ⊎ C5. Thus e(a4a5, Q) ≤ 5. Similarly, if x1a4 ∈ E then e(a2a3, Q) ≤ 5
and so e(Q,L) ≤ 14, a contradiction. Hence x1a4 6∈ E. Thus e(a4a5, Q) ≤ 4
and so e(a1a2a3, Q) ≥ 11. This implies that if e(a2, x1x3) = 2 then there is a
choice {i, j} = {2, 4} such that e(xi, a1a3) = 2 and e(a2, x1xjx3) = 3. Thus
[x0, x1, xj , x3, a2] ⊇ F1 and xi → (L, a2), a contradiction. Hence e(a2, x1x3) = 1,
e(a1a3, Q) = 8, e(a2, x2x4) = 2 and e(a4a5, Q) = 4 with a5x1 ∈ E. Consequently,
[a4, a5, a1, x0, x1] ⊇ F1 and [a2, a3, x2, x3, x4] ⊇ C5, a contradiction. Therefore
e(x1, a3a4) = 0.

Next, suppose e(x1, a1a5) = 2 or e(x1, a1a2) = 2. Say w.l.o.g. e(x1, a1a5) = 2.
Then [a4, a5, a1, x0, x1] ⊇ F1. Thus e(a2a3, x2x4) ≤ 2. Hence e(a2a3, Q) ≤ 5 and
so e(a1a5a4, x2x3x4) ≥ 8. This implies that if x3a5 ∈ E then there is a choice
{i, j} = {2, 4} such that e(a5, x1xix3) = 3, e(xj , a1a4) = 2 and consequently,
H ⊇ F1⊎C5, a contradiction. Hence a5x3 6∈ E and it follows that e(a1, x2x3x4) =
3, e(a5, x2x4) = 2, e(a4, x2x3x4) = 3, e(a2a3, Q) = 5 with a2x1 ∈ E. Then
[a3, a2, a1, x0, x1] ⊇ F1 and [a4, a5, x2, x3, x4] ⊇ C5, a contradiction. Therefore
e(x1, a1a5) ≤ 1 and e(x1, a1a2) ≤ 1. Thus e(x1, L) ≤ 2. Assume that a1x3 ∈
E. Then x2 6→ (L, a1) as H 6⊇ 2C5. Hence e(x2, a2a5) ≤ 1, and similarly,
e(x4, a2a5) ≤ 1. As e(Q,L) ≥ 15, it follows that e(x1, a2a5) = 2, e(x3, L) = 5,
e(x2x4, a1a3a4) = 6 and e(x2, a2a5) = e(x4, a2a5) = 1. Say w.l.o.g. a5x4 ∈ E.
Then [D−x2+a5] ⊇ F1 and x2 → (L, a5), a contradiction. Therefore a1x3 6∈ E. If
x1a1 ∈ E then e(x1, a2a5) = 0 and so e(a1, Q−x3)+e(L−a1, Q−x1) ≥ 15. Then
[D−x2+a1] ⊇ F1 and x2 → (L, a1), a contradiction. Hence N(x1, L) ⊆ {a2, a5}.
As e(Q,L) ≥ 15, e(a2a5, x2x4) ≥ 3 and e(a2a4, x3xi) ≥ 3 for i ∈ {2, 4}. Say
w.l.o.g. x2a5 ∈ E. Then [x0, x1, x2, a5, a1] ⊇ C5 and [x3, x4, a2, a3, a4] ⊇ C5, a
contradiction.

Case 3. N(x0, L) = {ai, ai+2} for some i ∈ {1, 2, 3, 4, 5}. Say N(x0, L) =
{a1, a3}. Then e(Q,L) ≥ 14. As H 6⊇ 2C5, e(a2, Q) ≤ 2. We claim that
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e(x1, a1a3) = 0. On the contrary, say e(x1, a1a3) ≥ 1. Then [x0, x1, a1, a2, a3] ⊇
C5. SinceH 6⊇ 2C5, H 6⊇ F1⊎C5 andH 6⊇ F2⊎C5, we see that e(a4a5, x2x3x4) ≤ 3
by Lemma 2.1(c). Thus e(a4a5, Q) ≤ 5 and e(a1a3, Q) ≥ 14 − e(a2, Q) −
e(a4a5, Q) ≥ 7. As e(a1a3, Q) ≤ 8, it follows that either e(a1, Q) = 4 and
x1a5 ∈ E or e(a3, Q) = 4 and x1a4 ∈ E. Say w.l.o.g. the former holds. Then
[D−x3+a1] ⊇ F2, [x0, x1, a1, a5, a4] ⊇ F1 and [x0, x1, a1, a5, xi] ⊇ F2 for i ∈ {2, 4}.
Furthermore, if x1a2 ∈ E then [x0, x1, a1, a5, a2] ⊇ F2 and [x0, x1, a1, a2, xi] ⊇ F2

for i ∈ {2, 4}. Assume for the moment that e(a3, x2x4) = 2. Then we see that
e(a2, x2x4) = 0 as H 6⊇ F1⊎C5. If x1a2 ∈ E, then e(a4, x2x4) = 0 as H 6⊇ F2⊎C5

and for the same reason, [a3, a4, a5, x3, xi] 6⊇ C5 for i ∈ {2, 4}. This implies
that x3a5 6∈ E and so e(a5, x2x4) ≥ 1 since 8 ≥ e(a1a3, Q) ≥ 14 − e(a2, Q) −
e(a4a5, Q) ≥ 7. Thus x3a3 6∈ E since [a3, a4, a5, x3, xi] 6⊇ C5 for i ∈ {2, 4}.
It follows that {a3x1, x3a4} ⊆ E. Consequently, [a1, a5, a4, x2, x3] ⊇ C5 and
[x0, x1, x4, a2, a3] ⊇ F2, a contradiction. Hence x1a2 6∈ E. As e(Q,L) ≥ 14, it fol-
lows that a2x3 ∈ E, e(a1a3, Q) = 8, e(x1, a4a5) = 2 and e(a4a5, x2x3x4) = 3. Say
w.l.o.g. a4x2 ∈ E. Then [a2, a3, a4, x2, x3] ⊇ C5 and so H ⊇ F2 ⊎ C5, a contra-
diction. Hence e(a3, x2x4) ≤ 1. It follows that e(a3, x2x4) = 1, e(a3, x1x3) = 2,
e(a2, Q) = 2 and e(a4a5, Q) = 5 with e(x1, a4a5) = 2. Thus [x0, x1, a5, a4, a3] ⊇
C5 and so e(a2, x1x3) = 2 as H 6⊇ 2C5. Say w.l.o.g. a3x2 ∈ E. As H 6⊇ F2 ⊎ C5,
we see that [x2, x3, a5, a4, a3] 6⊇ C5 and [a3, a4, x2, x3, x4] 6⊇ C5. This implies
that e(a5, x2x3) = 0 and a4x4 6∈ E. As e(a4a5, x2x3x4) = 3, it follows that
[a4, a5, x2, x3, x4] ⊇ C5 and so H ⊇ 2C5, a contradiction. Therefore e(x1, a1a3) =
0. Assume e(x1, a4a5) = 0. As e(Q,L) ≥ 14, it follows that e(x2x3x4, L−a2) = 12
and e(a2, Q) = 2. Thus [x2, x3, x4, a4, a5] ⊇ K−

5
. As [x1, x0, a1, a2, a3] ⊇ F , we

have τ(L) ≥ 4 by the optimality of {D,L}. Consequently, x0 → (L, ar) for
some r ∈ {4, 5} and so H ⊇ 2C5 as [Q + ar] ⊇ C5, a contradiction. Hence
e(x1, a4a5) ≥ 1. Say w.l.o.g. x1a5 ∈ E. Then [x0, x1, a5, a4, a3] ⊇ C5. Since
H 6⊇ 2C5, H 6⊇ F1 ⊎ C5 and H 6⊇ F2 ⊎ C5, we see that e(a1a2, x2x3x4) ≤ 3
by Lemma 2.1(c). Thus e(a1a2, Q) ≤ 4 and so e(a3a4a5, Q) ≥ 10. Hence
e(a4a5, Q) ≥ 7. As above, we shall have that [x2, x3, x4, a4, a5] 6⊇ K−

5
. This

implies that e(a4a5, x2x3x4) 6= 6. Thus e(a4a5, x2x3x4) = 5, e(x1, a4a5) = 2,
e(a3, x2x3x4) = 3 and e(a1a2, Q) = 4. Similarly, we shall have e(a1, x2x3x4) = 3
as [x0, x1, a4, a5, a1] ⊇ C5. As e(a4a5, x2x3x4) = 5, we may assume w.l.o.g. that
e(a4, x2x3x4) = 3. Thus [a3, a4, x2, x3, x4] ⊇ K−

5
and [a2, a1, a5, x1, x0] ⊇ F . By

the optimality of {D,L}, we shall have τ(L) ≥ 4. Thus x0 → (L, ar) for some
r ∈ {4, 5} and so H ⊇ 2C5, a contradiction.

Case 4. N(x0, L) = {ai, ai+1} for some i ∈ {1, 2, 3, 4, 5}. Say, N(x0, L) =
{a1, a2}. First, suppose that x1a4 ∈ E. Then [x0, x1, a4, a5, a1] ⊇ C5 and
[x0, x1, a4, a3, a2] ⊇ C5. Since H 6⊇ 2C5, H 6⊇ F1 ⊎ C5 and H 6⊇ F2 ⊎ C5, we
see that e(a2a3, Q − x1) ≤ 3 and e(a1a5, Q − x1) ≤ 3 by Lemma 2.1(c). As
e(Q,L) ≥ 14, it follows that e(x1, L) = 5, e(a4, Q) = 4, e(a2a3, Q − x1) = 3 and
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e(a1a5, Q − x1) = 3. Then [x0, x1, a5, a1, a2] ⊇ C5 and so e(a3a4, Q − x1) ≤ 3.
Thus e(a3, Q− x1) = 0 as e(a4, Q− x1) = 3. Similarly, e(a5, Q− x1) = 0. Thus
e(a1a2, Q − x1) = 6. Then [a1, x2, x3, a4, a5] ⊇ C5 and [a3, a2, x0, x1, x4] ⊇ F2, a
contradiction. Hence x1a4 6∈ E.

Next, suppose e(x3, a1a2) = 2. Then e(xi, a1a3) ≤ 1 and e(xi, a2a5) ≤ 1 for
each i∈ {2, 4} asH 6⊇2C5. Thus e(x2x4, L−a4)≤4 and so e(x1, L−a4)+e(x3, L)+
e(a4, x2x4)≥10. Then e(x1, a1a2)≥1. Thus [xi, x1, x0, a1, a2]⊇ F1 for i ∈ {2, 4}.
Clearly, e(x3, a3a5) ≥ 1. Assume e(x3, a3a5) = 2. Then e(x2x4, a3a5) = 0 as
H 6⊇ F1 ⊎ C5. If e(a4, x2x4) = 1, then e(x1, L − a4) = 4 , e(x3, L) = 5 and
e(x2x4, a1a2) = 4. Thus [x0, x1, x4, a2, a3] ⊇ F2 and [x3, a4, a5, a1, x2] ⊇ C5, a
contradiction. Hence e(a4, x2x4) = 2. If x3a4 ∈ E then [x2, x3, x4, a4, ai] ⊇ F2 for
i ∈ {3, 5}. As e(x1, a3a5) ≥ 1, we see that H ⊇ F2 ⊎ C5, a contradiction. Thus
x3a4 6∈ E, e(x1, L−a4) = 4, e(x3, L−a4) = 4, e(a4, x2x4) = 2 and e(x2x4, a1a2) =
4. Thus [x0, x1, x4, a2, a3] ⊇ F2 and [x3, a1, a5, a4, x2] ⊇ C5, a contradiction.
We conclude that e(x3, a3a5) = 1. Thus e(x1, L − a4) = 4, e(x3, L) = 4 and
e(a4, x2x4) = 2. Say w.l.o.g. x3a5 ∈ E. Then [x2, x4, a5, a4, x3] ⊇ F2 and
[x0, x1, a1, a2, a3] ⊇ C5, a contradiction. Therefore e(x3, a1a2) ≤ 1. Next, sup-
pose that e(x2, a1a2) ≥ 1 and e(x4, a1a2) ≥ 1. Then [xi, x1, x0, a1, a2] ⊇ C5

for i ∈ {2, 4}. Since H 6⊇ 2C5, H 6⊇ F1 ⊎ C5 and H 6⊇ F2 ⊎ C5, we see
that e(x3xi, a3a4a5) ≤ 3 for i ∈ {2, 4} by Lemma 2.1(c). Furthermore, if for
some i ∈ {2, 4}, say i = 2, we have e(x2, a3a4a5) = 3, then [x2, a3, a4, a5, aj ] ⊇
F1 for j ∈ {1, 2} and so e(x3, a1a2) = 0 since H 6⊇ C5 ⊎ F1. Consequently,
e(x1, L − a4) = 4, e(x2x4, L) = 10 and so H ⊇ 2C5, a contradiction. There-
fore if e(x3, a3a4a5) = 0 then e(xi, a3a4a5) ≤ 2 for i ∈ {2, 4}. Together with
x1a4 6∈ E and e(x3, a1a2) ≤ 1, we see that if e(x3, a3a4a5) = 0 or e(x3, a3a4a5) > 1
then e(Q,L) ≤ 13, a contradiction. Hence e(x3, a3a4a5) = 1. It follows that
e(x1, L − a4) = 4, e(x3, a1a2) = 1, e(x2x4, a1a2) = 4, e(x2, a3a4a5) = 2 and
e(x4, a3a4a5) = 2. If e(x3, a3a5) = 1, then either [x2, x3, a3, a4, a5] ⊇ C5 or
[x2, x3, a3, a4, a5] ⊇ F1, and consequently, H ⊇ C5 ⊎ F1, a contradiction. Hence
x3a4 ∈ E. Then we see that [x2, x3, a4, a5, a1] ⊇ C5 and [x0, x1, x4, a2, a3] ⊇ F2,
a contradiction. Therefore either e(x2, a1a2) = 0 or e(x4, a1a2) = 0. Say w.l.o.g.
e(x4, a1a2) = 0.

Finally, if e(x2, a1a2) ≥ 1 then, as above, we would have e(x3x4, a3a4a5) ≤ 3
and so e(Q,L) ≤ 13, a contradiction. Hence e(x2, a1a2) = 0. As e(Q,L) ≥ 14,
it follows that e(x1, L − a4) = 4, e(x3, L − ai) = 4 for some i ∈ {1, 2} and
e(x2x4, a3a4a5) = 6. As [x2, x3, x4, a4, a5] ⊇ C5, we see H ⊇ 2C5, a contradiction.

Case 5. N(x0, L) = {ai, ai+1, ai+2} for some i ∈ {1, 2, 3, 4, 5}.
Say N(x0, L) = {a1, a2, a3}. Then for each i ∈ {2, 4, 5}, [L − ai + x0] ⊇ C5 or
[L−ai+x0] ⊇ F1 and so e(ai, Q) ≤ 2. Thus e(a1a3, Q) ≥ 7. Hence [Q+ai] ⊇ C5

for each i ∈ {1, 3}. Therefore [L− ai + x0] 6⊇ C5 and [L− ai + x0] 6⊇ B for each
i ∈ {1, 3}. This implies that τ(L) ≤ 1. As e(a1a3, Q) ≤ 8, e(a4a5, Q) ≥ 3. Say
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w.l.o.g. e(a5, Q) = 2. As [Q + a5] 6⊇ C5, N(a5, Q) = {x2, x4} or N(a5, Q) =
{x1, x3}. First, assume N(a5, Q) = {x2, x4}. Then [a4, a5, x2, x3, x4] ⊇ F . As
e(a1a3, Q) ≥ 7, e(x1, a1a3) ≥ 1 and so [x0, x1, a1, a2, a3] ⊇ C ′ ∼= C5 with τ(C ′) ≥
2, contradicting the optimality of {D,L}. Hence N(a5, Q) = {x1, x3}. Then
[a4, a5, x1, xi, x3] ⊇ F for each i ∈ {2, 4}. By the optimality of {D,L} and
Lemma 2.1(b), we get e(xi, a1a3) ≤ 1 for each i ∈ {2, 4} and so e(a1a3, Q) ≤ 6, a
contradiction.

Case 6. N(x0, L) = {ai, ai+1, ai+3} for some i ∈ {1, 2, 3, 4, 5}.
Say N(x0, L) = {a1, a2, a4}. Clearly, x0 → (L, a3) and x0 → (L, a5). Thus
e(a3, Q) ≤ 2 and e(a5, Q) ≤ 2 for otherwise H ⊇ 2C5. As H 6⊇ 2C5, we
see that x0 6→ L and so a3a5 6∈ E. As e(Q,L) ≥ 13, e(a3a5, Q) ≥ 1. Say
w.l.o.g. e(a5, Q) ≥ 1. Then [Q + a5] ⊇ F . By the optimality of {D,L}, τ(L) ≥
τ(x0a1a2a3a4x0). This implies that a2a5 ∈ E. Similarly, if e(a3, Q) ≥ 1 then
a1a3 ∈ E. Assume a1a3 6∈ E. Then e(a3, Q) = 0 and so e(a1a2a4, Q) ≥ 11. Then
e(ar, Q) = 4 for some r ∈ {1, 2} and [L− ar + x0] ⊇ F . As τ(arx1x2x3x4ar) ≥ 3,
it follows that τ(L) = 3 and so {a1a4, a2a4} ⊆ E. Thus [L − a1 + x0] ⊇ F2 and
[Q + a1] ⊇ C5, a contradiction. Therefore a1a3 ∈ E. Thus [L − a4 + x0] ⊇ F2.
Hence [Q + a4] 6⊇ C5 and so e(a4, Q) ≤ 2. Consequently, e(a1a2, Q) ≥ 7 and so
[Q + ai] ⊇ C5 for each i ∈ {1, 2}. Hence a1a4 6∈ E and a2a4 6∈ E for otherwise
H ⊇ F2 ⊎ C5. Hence τ(L) = 2. By the optimality of {D,L}, [Q + ai] 6⊇ C with
C ∼= C5 and τ(C) ≥ 3 for each i ∈ {1, 2}. This implies that e(ai, Q) ≤ 3 for each
i ∈ {1, 2} and therefore e(a1a2, Q) ≤ 6, a contradiction.

Lemma 2.6. Let D, L1 and L2 be disjoint subgraphs of G with D ∼= F and

L1
∼= L2

∼= C5. Suppose that L1 = a1a2a3a4a5a1, V (D) = {x0, x1, x2, x3, x4} and

E(D) = {x0x1, x1x2, x2x3, x3x4, x4x1} such that e(x0, L1) = 0, and e(x1x3, L1) =
10, N(x2, L1) = N(x4, L1) = {a1, a2, a4}, τ(L1) = 4 and a3a5 6∈ E. Suppose that

e(x0x2a3a5, L2) ≥ 13. Then [D,L1, L2] contains either of F1 ⊎ 2C5 or 3C5.

Proof. For the proof, we may assume that none of x0x3, x1x3 and x2x4 is an edge
as they will not be used in the proof. Set G1 = [D,L1], G2 = [G1, L2] and R =
{x0, x2, a3, a5}. It is easy to see that for any permutation f of {x2, a3, a5}, we can
extend f to be an automorphism of G1 such that every vertex of G1−{x2, a3, a5}
is fixed under f . Therefore x2, a3 and a5 are in the symmetric position in the
following argument. On the contrary, suppose that G2 6⊇ F1⊎2C5 and G2 6⊇ 3C5.
It is easy to check that if u → (L2;R− {u}) for some u ∈ R then G2 ⊇ F1 ⊎ 2C5

or G2 ⊇ 3C5. Therefore u 6→ (L2;R − {u}) for each u ∈ R. By Lemma
2.1(d), there exist two labellings R = {y1, y2, y3, y4} and L2 = b1b2b3b4b5b1
such that e(y1y2, b1b2b3b4) = 8, e(y3, b1b5b4) = 3 and e(y4, b1b4) = 2. If x0 ∈
{y1, y2}, we may assume that {y1, y2} = {x0, x2}. Then [x0, x1, x2, b2, b3] ⊇ C5,
[a3, a5, b1, b5, b4] ⊇ C5 and [x3, x4, a1, a2, a4] ⊇ C5, a contradiction. Hence x0 6∈
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{y1, y2}. Say w.l.o.g. that {y1, y2} = {a3, a5}. Thus [a3, a4, a5, b2, b3] ⊇ C5,
[x0, x2, b1, b5, b4] ⊇ C5 and [x1, x4, x3, a1, a2] ⊇ C5, a contradiction.

Lemma 2.7. Let D and L be disjoint subgraphs of G with D ∼= K+
4

and L ∼= B.

Let R be the set of the four vertices of L with degree 2 in L. Suppose that

e(D,R) ≥ 13. Then either [D,L] ⊇ K+
4
⊎C5 or [D,L] ⊇ 2C5 or [D,L] ⊇ B⊎C5.

Proof. Say H = [D,L]. On the contrary, suppose that H contains none of
K+

4
⊎ C5, 2C5 and B ⊎ C5. Say V (D) = {x0, x1, x2, x3, x4} with e(x0, D) = 1

and x0x1 ∈ E. Let Q = [x1, x2, x3, x4]. Say L = a0a1a2a0a3a4a0. Then Q ∼= K4

and R = {a1, a2, a3, a4}. If e(x0, R) ≥ 3, say w.l.o.g. e(x0, a1a2a3) = 3, then
[L − ai + x0] ⊇ C5 and so Q + ai 6⊇ C5 for each i ∈ {1, 2, 4}. Consequently,
e(ai, Q) ≤ 1 for all i ∈ {1, 2, 4} and so e(D,R) ≤ 11, a contradiction. Hence
e(x0, R) ≤ 2. Suppose that e(x0, R) = 2. Then e(R,Q) ≥ 11. First, assume
e(x0, a1a2)=1 and e(x0, a3a4)=1. Say w.l.o.g. e(x0, a1a3)=2. Then e(a2, Q)≤1
and e(a4, Q) ≤ 1 as H 6⊇ 2C5. Consequently, e(R,Q) ≤ 10, a contradiction.
Therefore we may assume w.l.o.g. that e(x0, a1a2) = 2. We claim e(x1, a1a2) =
0. To see this, suppose e(x1, a1a2) ≥ 1. Then [x0, x1, a1, a2, a0] ⊇ C5. Thus
e(a3a4, x2x3x4) ≤ 2 for otherwise [a3, a4, x2, x3, x4] ⊇ C5 or [a3, a4, x2, x3, x4] ⊇
K+

4
. Thus e(a3a4, Q) ≤ 4 and so e(a1a2, Q) ≥ 7. Say w.l.o.g. e(a1, Q) = 4.

Then [D − xi + a1] ⊇ K+
4

for each i ∈ {2, 3, 4} and so [L − a1 + xi] 6⊇ C5 for
each i ∈ {2, 3, 4}. Thus I(a2a3, Q − x1) = ∅ and so e(a2a3, Q) ≤ 5. Hence
e(a4, Q) ≥ 2. Similarly, e(a3, Q) ≥ 2. It follows that [a3, a4, x2, x3, x4] ⊇ C5

or [a3, a4, x2, x3, x4] ⊇ B, a contradiction. This shows that e(x1, a1a2) = 0.
Suppose e(a1, Q − x1) = 3 or e(a2, Q − x1) = 3. Then [x0, x1, xi, a1, a2] ⊇ C5

for each i ∈ {2, 3, 4}. Thus [xi, xj , a0, a3, a4] 6⊇ C5 and [xi, xj , a0, a3, a4] 6⊇ B for
each 2 ≤ i < j ≤ 4. This implies that e(a3a4, Q− x1) ≤ 2. Hence e(a1a2, Q) ≥ 7
and so e(x1, a1a2) ≥ 1, a contradiction. Hence e(ai, Q − x1) ≤ 2 for each i ∈
{1, 2} and so e(a3a4, Q) ≥ 7. Say w.l.o.g. e(a4, Q) = 4. Then [D − xi + a4] ⊇
K+

4
for each i ∈ {2, 3, 4} and therefore I(a1a3, Q − x1) = ∅ as H 6⊇ K+

4
⊎

C5. Thus e(a1a3, Q) ≤ 4 and so e(a2, Q) ≥ 3, a contradiction. Next, suppose
e(x0, R) = 1. Then e(Q,R) ≥ 12. Say x0a1 ∈ E. Suppose e(x1, a1a2) ≥ 1. Then
[x0, x1, a1, a2, a0] ⊇ C5 or [x0, x1, a1, a2, a0] ⊇ B. Thus [x2, x3, x4, a3, a4] 6⊇ C5.
This implies that e(a3a4, Q−x1) ≤ 3. Thus e(a3a4, Q) ≤ 5 and so e(a1a2, Q) ≥ 7.
Thus [D − xi + a1] ⊇ C5 for all i ∈ {2, 3, 4}. As H 6⊇ 2C5, I(a2a3, Q − x1) = ∅
and I(a2a4, Q − x1) = ∅. Hence e(a2a3, Q) ≤ 5 and so e(a4, Q) ≥ 3. Then
I(a2a4, Q−x1) 6= ∅, a contradiction. Hence e(x1, a1a2) = 0. Thus e(a1a2, Q) ≤ 6
and e(a3a4, Q) ≥ 6. Then [xi, xj , a3, a4, a0] ⊇ C5 for some 2 ≤ i < j ≤ 4. Say
{i, j, k} = {2, 3, 4}. Then a2xk 6∈ E as H 6⊇ 2C5. Therefore e(a1a2, Q) ≤ 5 and
so e(a3a4, Q) ≥ 7. Thus [xr, xt, a3, a4, a0] ⊇ C5 for all 2 ≤ r < t ≤ 4. Therefore
e(a2, Q− x1) = 0 as H 6⊇ 2C5. Consequently, e(Q,R) ≤ 11, a contradiction.

Finally, suppose e(x0, R) = 0. As e(R,Q) ≥ 13, e(ai, Q) = 4 for some ai ∈ R.
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Say e(a1, Q) = 4. Then I(a2a3, Q− x1) = ∅ as H 6⊇ K+
4
⊎C5. Thus e(a4, Q) = 4

as e(R,Q) ≥ 13. Similarly, e(a3, Q) = 4. Then we readily see that H ⊇ K+
4
⊎C5,

a contradiction.

Lemma 2.8. Let B1 and B2 be disjoint subgraphs of G such that B1
∼= B and

B2
∼= B. Let R be the set of the four vertices of B1 with degree 2 in B1. Suppose

that e(R,B2) ≥ 13. Then [B1, B2] ⊇ 2C5 or [B1, B2] ⊇ B ⊎ C5.

Proof. On the contrary, suppose that [B1, B2] 6⊇ 2C5 and [B1, B2] 6⊇ B ⊎ C5.
Say B1 = a0a1a2a0a3a4a0 and B2 = b0b1b2b0b3b4b0. Then R = {a1, a2, a3, a4}
and e(R,B2 − b0) ≥ 9. This implies that e(aiai+1, bjbj+1) ≥ 3 for some i ∈ {1, 3}
and j ∈ {1, 3}. Say w.l.o.g. e(a1a2, b1b2) ≥ 3. Then [a1, a2, b0, b1, b2] ⊇ C5 and
[b1, b2, a0, a1, a2] ⊇ C5.

Therefore [a0, a3, a4, b3, b4] 6⊇ C5, [a0, a3, a4, b3, b4] 6⊇ B, [b0, b3, b4, a3, a4] 6⊇ C5

and [b0, b3, b4, a3, a4] 6⊇ B. This implies that e(a3a4, b3b4) ≤ 1 and e(b0, a3a4) ≤ 1.
If e(a1a2, b3b4) ≥ 3, then we also have that e(a3a4, b1b2) ≤ 1 and it follows
that e(a1a2, B2) = 10 and e(a3a4, b3b4) = 1 as e(R,B2) ≥ 13. Consequently,
[B2− br +a1] ⊇ C5 and [B1−a1+ br] ⊇ C5 where r ∈ {3, 4} with e(br, a3a4) = 1,
a contradiction. Hence e(a1a2, b3b4) ≤ 2. Suppose e(a3a4, b1b2) ≥ 3. Similarly, we
shall have e(a1a2, b3b4) ≤ 1, e(b0, a1a2) ≤ 1 and so e(R,B2) ≤ 12, a contradiction.
Therefore, e(a3a4, b1b2) ≤ 2. Thus e(a3a4, B2) ≤ 4 and so e(a1a2, B2) ≥ 9.
Consequently, e(a1a2, b3b4) ≥ 3, a contradiction.

Lemma 2.9. Let D and L be disjoint subgraphs of G with D ∼= F1 and L ∼= C5.

Suppose that {D,L} is optimal and e(D,L) ≥ 16. Then [D,L] contains one of

K+
4
⊎C5, K

+
4
⊎B, 2C5 and B⊎C5, or there exist two labellings L = a1a2a3a4a5a1

and V (D) = {x0, x1, x2, x3, x4} with E(D) = {x0x1, x1x2, x2x3, x3x4, x4x1, x2x4}
such that e(x0, L) = 0, e(a1a2a4, D− x0) = 12, N(a3, D) = N(a5, D) = {x2, x4},
τ(L) = 4 and a3a5 6∈ E.

Proof. Say H = [D,L]. Say that H does not contain any of K+
4
⊎ C5, K

+
4
⊎B,

2C5 and B ⊎ C5.
Let V (D) = {x0, x1, x2, x3, x4}, E(D) = {x0x1, x1x2, x2x3, x3x4, x4x1, x2x4} and
L = a1a2a3a4a5a1, Set Q = [x1, x2, x3, x4]. Since H 6⊇ 2C5 and H 6⊇ B ⊎ C5, we
see that for each ai ∈ V (L), if x0 → (L, ai) or x0

z
→ (L, ai) then e(ai, Q) ≤ 2.

Thus x0 6→ L for otherwise e(D,L) ≤ 15. Hence e(x0, L) ≤ 4.
Assume e(x0, L) = 4. Say e(x0, a1a2a3a4) = 4. As x0 6→ L, τ(a5, L) = 0.

Clearly, e(ai, Q) ≤ 2 for each i ∈ {2, 3, 5} since H 6⊇ 2C5. Thus e(a1a4, Q) ≥ 6.
Say e(a1, Q) ≥ 3. Then [Q+a1] ⊇ C with C ∼= C5 and τ(C) ≥ 3. Then a2a4 6∈ E
for otherwise [L − a1 + x0] ⊇ K+

4
. Thus τ(L) ≤ 2. As [L − a1 + x0] ⊇ F1,

we see that 2 ≥ τ(L) ≥ τ(C) ≥ 3 by the optimality of {D,L}, a contradiction.
Therefore e(x0, L) ≤ 3 and so e(Q,L) ≥ 13. Set T = x2x3x4x2. We divide the
proof into the following six cases.
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Case 1. N(x0, L) = {ai, ai+1, ai+2} for some i ∈ {1, 2, 3, 4, 5}.
Say N(x0, L) = {a1, a2, a3}. Then Q+ a2 6⊇ C5 and so e(a2, Q) ≤ 2. As x0 6→ L,
we see that τ(a2, L) ≤ 1. If {a1a4, a3a5} ⊆ E then x0 → (L, ai) or x0

z
→

(L, ai) and so e(ai, Q) ≤ 2 for each ai ∈ V (L). Consequently, e(Q,L) ≤ 10,
a contradiction. Hence a1a4 6∈ E or a3a5 6∈ E. Thus τ(L) ≤ 3. Suppose
τ(a2, L) = 1. Say w.l.o.g. a2a4 ∈ E. Then x0 → (L, ai) for i ∈ {3, 5}. Thus
e(ai, Q) ≤ 2 for i ∈ {3, 5}. As e(Q,L) ≥ 13, e(a1a4, Q) ≥ 7. Thus [Q + ar]
contains a 5-cycle with at least 4 chords, where e(ar, Q) = 4 with r ∈ {1, 4}.
As [L − ar + x0] ⊇ F1 and by the optimality of {D,L}, we have τ(L) ≥ 4, a
contradiction. Hence τ(a2, L) = 0. Suppose a1a3 ∈ E. Then [L− ai + x0] ⊇ K+

4

for each i ∈ {4, 5}. As H 6⊇ K+
4
⊎C5, e(ai, Q) ≤ 2 for i ∈ {4, 5}. As e(Q,L) ≥ 13,

e(a1a3, Q) ≥ 7 and e(a4a5, Q) ≥ 3. Say w.l.o.g. e(a5, Q) = 2. As [Q+ a5] 6⊇ C5,
e(a5, x2x4) = 2. As e(x1, a1a3) ≥ 1, [x1, x0, a1, a2, a3] ⊇ C5. Thus e(a4, T ) = 0 as
H 6⊇ 2C5. It follows that e(a1a3, Q) = 8 and a4x1 ∈ E. Consequently, H ⊇ 2C5,
a contradiction. Hence a1a3 6∈ E and so τ(L) ≤ 1. Since [L − ai + x0] ⊇ F1 for
each i ∈ {4, 5}, we see that [Q + ai] does not contain a 5-cycle with at least 2
chords for each i ∈ {4, 5} by the optimality of {D,L}. This implies that for each
i ∈ {4, 5}, e(ai, Q) ≤ 2 and if e(ai, Q) = 2 then e(ai, x2x4) = 2. Similar to the
above, we see that H ⊇ 2C5, a contradiction.

Case 2. N(x0, L) = {ai, ai+1, ai+3} for some i ∈ {1, 2, 3, 4, 5}.
Say N(x0, L) = {a1, a2, a4}. Then for each i ∈ {3, 5}, x0 → (L, ai) and so
e(ai, Q) ≤ 2. Thus e(a1a2a4, Q) ≥ 13−e(a3a5, Q) ≥ 9. Suppose that e(a3, Q) = 2
or e(a5, Q) = 2. Say w.l.o.g. e(a5, Q) = 2. Then e(a5, x2x4) = 2 as [Q+a5] 6⊇ C5.
If a3x3 ∈ E then [a3, a4, a5, x3, xi] ⊇ C5 for i ∈ {2, 4} and so e(xi, a1a2) = 0
for i ∈ {2, 4} since H 6⊇ 2C5. Consequently, e(a1a2a4, Q) ≤ 8, a contradic-
tion. Hence a3x3 6∈ E. If a3x1 ∈ E then [x1, x0, a1, a2, a3] ⊇ C5 and so
e(a4, T ) = 0 as H 6⊇ 2C5. Thus e(a1a2a4, Q) = 9 and so e(a3, Q) = 2. Con-
sequently, [Q + a3] ⊇ C5, a contradiction. Hence N(a3, Q) ⊆ {x2, x4}. If
e(x1, a2a4) ≥ 1 then [x1, x0, a2, a3, a4] ⊇ C5 and so e(a1, T ) = 0 as H 6⊇ 2C5.
It follows that e(a3, x2x4) = 2 and e(a2a4, Q) = 8. Consequently, H ⊇ 2C5, a
contradiction. Hence e(x1, a2a4) = 0. Thus e(a2a4, T ) ≥ 5 as e(a1a2a4, Q) ≥ 9.
Hence [x3, x4, a2, a3, a4] ⊇ C5 and [x0, x1, x2, a5, a1] ⊇ C5, a contradiction.

Therefore e(a3, Q) ≤ 1 and e(a5, Q) ≤ 1. Then e(a1a2a4, Q) ≥ 11. Thus
e(a1a2, Q) ≥ 7. Say w.l.o.g. e(a1, Q) = 4. Then [a5, a1, x2, x3, x4] ⊇ K+

4
. As

e(x1, a2a4) ≥ 1, [x1, x0, a2, a3, a4] ⊇ C5 and so H ⊇ K+
4
⊎ C5, a contradiction.

Case 3. N(x0, L) = {ai, ai+1} for some i ∈ {1, 2, 3, 4, 5}. In this case,
e(Q,L) ≥ 14. Say e(x0, a1a2) = 2. Suppose x1a4 ∈ E. Then [x1, x0, a1, a5, a4] ⊇
C5. As H does not contain one of 2C5 and K+

4
⊎C5, we see that e(a2a3, T ) ≤ 2.

Similarly, e(a1a5, T ) ≤ 2 as [x1, x0, a2, a3, a4] ⊇ C5. Thus e(Q,L) ≤ 12, a con-
tradiction. Hence x1a4 6∈ E. Next, suppose that e(x1, a3a5) ≥ 1. Say w.l.o.g.
x1a3 ∈ E. Then [x1, x0, a1, a2, a3] ⊇ C5. As H does not contain one of 2C5,
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B ⊎ C5 and K+
4

⊎ C5, we have that e(a4a5, T ) ≤ 2 and either e(a4, T ) = 0
or e(a5, T ) = 0. If we also have x1a5 ∈ E then e(a3a4, T ) ≤ 2 and either
e(a4, T ) = 0 or e(a3, T ) = 0. Consequently, it follows, as e(Q,L) ≥ 14, that
e(a5, T ) = 2, e(a3, T ) = 2, e(a4, T ) = 0 and e(a1a2, Q) = 8. Then xi → (L, a1)
for some xi ∈ V (T ) with e(xi, a2a5) = 2 and so H ⊇ 2C5, a contradiction. Hence
x1a5 6∈ E. Thus e(a1a2a3, Q) ≥ 12. Then x3 → (L, a2) and so H ⊇ 2C5, a
contradiction. We conclude that e(x1, a3a4a5) = 0.

As e(Q,L) ≥ 14, e(x2x4, a1a2) ≥ 1. Say w.l.o.g. e(x2, a1a2) ≥ 1. Then
[x2, x1, x0, a1, a2] ⊇ C5. As H 6⊇ 2C5 and by Lemma 2.1(c), e(x3x4, a3a4a5) ≤ 4.
Thus e(a3a4a5, Q) ≤ 7. Hence e(a1a2, Q) ≥ 7. Say w.l.o.g. e(a1, Q) = 4. Then
xi 6→ (L, a1) for each xi ∈ V (T ) since H 6⊇ 2C5. This implies that I(a2a5, T ) = ∅
and so e(a2a5, Q) ≤ 4. Consequently, e(a3a4, T ) = 6 as e(Q,L) ≥ 14. Thus
[a5, a4, a3, x3, x4] ⊇ K+

4
and [x2, x1, x0, a2, a1] ⊇ C5, a contradiction.

Case 4. N(x0, L) = {ai, ai+2} for some i ∈ {1, 2, 3, 4, 5}. Say, N(x0, L) =
{a1, a3}. The e(a2, Q) ≤ 2 as H 6⊇ 2C5. First, suppose e(x1, a1a3) ≥ 1.
Then [x1, x0, a1, a2, a3] ⊇ C5 and therefore e(a4a5, T ) ≤ 2. Thus e(a1a3, Q) ≥
14 − 2 − 2 − e(x1, a4a5) ≥ 8. It follows that e(a1a3, Q) = 8, e(a2, Q) = 2,
e(a4a5, T ) = 2 and e(x1, a4a5) = 2. Consequently, H ⊇ 2C5, a contradiction.
Hence e(x1, a1a3) = 0. Next, suppose e(x1, a4a5) ≥ 1. Say w.l.o.g. x1a4 ∈ E.
Then [x1, x0, a1, a5, a4] ⊇ C5 and so e(a2a3, T ) ≤ 2. Thus e(a1a5a4, Q) ≥
14 − 3 = 11. It follows that e(a4a5, Q) = 8, e(a1, T ) = 3, x1a2 ∈ E and
e(a2a3, T ) = 2. Then [D−x1+a1] ⊇ K+

4
and [L−a1+x1] ⊇ C5, a contradiction.

Hence e(x1, a4a5) = 0. As e(Q,L) ≥ 14, it follows that e(T, L − a2) = 12 and
e(a2, Q) = 2. Then we readily see that H ⊇ 2C5, a contradiction.

Case 5. e(x0, L) = 1. Then e(Q,L) ≥ 15. Say x0a1 ∈ E. First, sup-
pose e(x1, a3a4) ≥ 1. Say w.l.o.g. x1a3 ∈ E. Then [x1, x0, a1, a2, a3] ⊇ C5.
Thus e(a4a5, T ) ≤ 2 and so e(a4a5, Q) ≤ 4. If we also have x1a4 ∈ E then
e(a2a3, T ) ≤ 2 as [x1, x0, a1, a5, a4] ⊇ C5. But then we obtain e(Q,L) ≤ 12, a con-
tradiction. Hence x1a4 6∈ E. As e(Q,L) ≥ 15, it follows that e(a1a2a3, Q) = 12,
e(a4a5, T ) = 2 and x1a5 ∈ E. Then [a4, a5, x1, x0, a1] ⊇ F1 and [T, a2, a3] ⊇ K5.
By the optimality of {D,L}, [L] ∼= K5 and so H ⊇ 2C5, a contradiction. Hence
e(x1, a3a4) = 0. Then e(a2a5, Q) ≥ 15 − e(a1a3a4, Q) ≥ 15 − 10 = 5. Thus
e(x2x4, a2a5) ≥ 1. Say w.l.o.g. x2a5 ∈ E. Then [x0, x1, x2, a5, a1] ⊇ C5. As
H 6⊇ 2C5, e(a2a4, x3x4) ≤ 2. Clearly, e(a2a3a4, x1x2) ≤ 4. Then e(a1a5, Q) ≥
15 − 6 − e(a3, x3x4) ≥ 7 and so e(a1, T ) ≥ 2. Suppose that a1x3 ∈ E. Then
xi 6→ (L, a1) for all xi ∈ V (T ) for otherwise H ⊇ 2C5. This implies that
I(a2a5, T ) = ∅. As x2a5 ∈, x2a2 6∈ E and so e(a2a3a4, x1x2) ≤ 3. As e(Q,L) ≥
15, it follows that e(a1a5, Q) = 8, e(a2a3a4, x3x4) = 4 and so e(x3x4, a3a4) = 4.
Thus [a2, a3, a4, x3, x4] ⊇ K+

4
and so H ⊇ K+

4
⊎ C5, a contradiction. Hence

a1x3 6∈ E. Thus e(a1a5, Q) = 7. It follows that e(a1, Q − x3) = 3, e(a5, Q) = 4,
e(a2a4, x3x4) = 2, e(a3, x3x4) = 2, e(x2, a3a4) = 2 and e(a2, x1x2) = 2. Then
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[x2, x1, x0, a1, a2] ⊇ C5 and [a5, a4, a3, x3, x4] ⊇ C5, a contradiction.

Case 6. e(x0, L) = 0. As H 6⊇ K+
4
⊎ C5, we see that for each ai ∈ V (L),

if e(ai, Q − x3) = 3 then x3 6→ (L, ai). Since e(ai, Q) = 4 for some ai ∈ V (L)
as e(Q,L) ≥ 16, it follows that x3 6→ L and so e(x3, L) ≤ 4. First, suppose
e(x3, L) = 4. Say e(x3, L− a5) = 4. Then e(ai, Q− x3) ≤ 2 for each
i ∈ {2, 3, 5}. As e(Q,L) ≥ 16, it follows that e(ai, Q−x3) = 2 for i ∈ {2, 3, 5} and
e(a1a4, Q − x3) = 6. If x1a5 ∈ E, then e(a5, x1x2) = 2 or e(a5, x1x4) = 2. Say
w.l.o.g. e(a5, x1x2) = 2. Then [x0, x1, x2, a1, a5] ⊇ K+

4
and [x3, x4, a2, a3, a4] ⊇

C5, a contradiction. Hence e(a5, x2x4) = 2. Then [D − x3 + a5] ⊇ F1. By the
optimality of {D,L}, τ(L) ≥ τ(x3a1a2a3a4x3). This implies that τ(a5, L) = 2
and so x3 → (L, a1), a contradiction.

Next, suppose that e(x3, L) = 3 and N(x3, L) = {ai, ai+1, ai+3} for some
i ∈ {1, 2, 3, 4, 5}. Say N(x3, L) = {a1, a2, a4}. Then e(a3, Q − x3) ≤ 2 and
e(a5, Q − x3) ≤ 2. As e(Q,L) ≥ 16, it follows that e(a1a2a4, Q − x3) = 9,
e(a3, Q − x3) = 2 and e(a5, Q − x3) = 2. If e(x1, a3a5) ≥ 1, then we may
assume w.l.o.g. that e(a3, x1x2) = 2. Consequently, [x0, x1, x2, a2, a3] ⊇ K+

4

and [x3, x4, a1, a5, a4] ⊇ C5, a contradiction. Hence e(a3a5, x2x4) = 4. Clearly,
[x0, x1, x2, a2, a3] ⊇ F1 and τ(x4x3a1a5a4x4) ≥ 3. Thus τ(L) ≥ 3 by the opti-
mality of {D,L}. As x3 6→ (L, a1), a3a5 6∈ E. Thus a1a4 ∈ E or a2a4 ∈ E. Say
w.l.o.g. a1a4 ∈ E. Then τ(x4x3a1a5a4x4) = 4. Thus τ(L) = 4 and so the lemma
holds.

Next, suppose that N(x3, L) = {ai, ai+1, ai+2} for some i ∈ {1, 2, 3, 4, 5}.
Say N(x3, L) = {a1, a2, a3}. Then e(a2, Q − x3) ≤ 2. As e(D,L) ≥ 16, either
e(a1a5, Q−x3) = 6 or e(a3a4, Q−x3) = 6. Say w.l.o.g. e(a1a5, Q−x3) = 6. Then
[x0, x1, xi, a1, a5] ⊇ K+

4
and so [x3, xj , a2, a3, a4] 6⊇ C5 for each {i, j} = {2, 4}.

This implies that e(a4, x2x4) = 0 and so e(D,L) ≤ 15, a contradiction.

Next, suppose that e(x3, L) = 2 and N(x3, L) = {ai, ai+2} for some
i ∈ {1, 2, 3, 4, 5}. Say N(x3, L) = {a1, a3}. Then e(a2, Q − x3) ≤ 2. As
e(Q,L) ≥ 16, it follows that e(L − a2, Q − x3) = 12 and e(a2, Q − x3) = 2.
Then [x0, x1, x2, a4, a5] ⊇ K+

4
and [x3, x4, a1, a2, a3] ⊇ C5, a contradiction.

Next, suppose that e(x3, L) = 2 and N(x3, L) = {ai, ai+1} for some i ∈
{1, 2, 3, 4, 5}. SayN(x3, L) = {a1, a2}. As e(Q,L) ≥ 16, either e(a1a5, Q−x3) = 6
or e(a2a3, Q−x3) = 6. Say w.l.o.g. e(a1a5, Q−x3) = 6. Then [x0, x1, xi, a1, a5] ⊇
K+

4
and so [xj , x3, a2, a3, a4] 6⊇ C5 for each {i, j} = {2, 4}. This implies that

e(a4, x2x4) = 0. Consequently, e(Q,L) ≤ 15, a contradiction.

Finally, we have e(x3, L) = 1. Then e(L,Q−x3) = 15, clearly, H ⊇ K+
4
⊎C5,

a contradiction.

Lemma 2.10. Let D, L1 and L2 be disjoint subgraphs of G with D ∼= F1 and

L1
∼= L2

∼= C5. Suppose that L1 = a1a2a3a4a5a1, V (D) = {x0, x1, x2, x3, x4} and

E(D) = {x0x1, x1x2, x2x3, x3x4, x4x1, x2x4} such that
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e(x0, L1) = 0, e(a1a2a4, D−x0) = 12, N(a3, D)=N(a5, D)= {x2, x4}, τ(L1) = 4
and a3a5 6∈ E. Suppose that {D,L1, L2} is optimal and e(x0x3a3a5, L2) ≥ 13.
Then [D,L1, L2] contains either K+

4
⊎ 2C5 or 3C5.

Proof. Let G1 = [D,L1], G2 = [D,L1, L2] and R = {x0, x3, a3, a5}. On the
contrary, suppose that G2 does not contain any of K+

4
⊎ 2C5 and 3C5. It is

easy to see that for any permutation f of {x3, a3, a5}, we can extend f to be an
automorphism of G1 such that any vertex in G1 − {x3, a3, a5} is fixed under f .
Thus x3, a3 and a5 are in the symmetric position in the following argument. It
is easy to check that if u → (L2;R − {u}) for some u ∈ R, then G2 ⊇ K+

4
⊎ 2C5

or G2 ⊇ 3C5. Thus u 6→ (L2;R − {u}) for each u ∈ R. By Lemma 2.1(d),
there exist two labellings R = {y1, y2, y3, y4} and L2 = b1b2b3b4b5b1 such that
e(y1y2, b1b2b3b4) = 8, e(y3, b1b5b4) = 3 and e(y4, b1b4) = 2. If x0 ∈ {y1, y2}, we
may assume w.l.o.g. that {x0, x3} = {y1, y2}. Then [G1 − x0 + b5] ⊇ F1 ⊎ K−

5
.

By the optimality of {D,L1, L2}, x0
na
→ (L2, b5). This implies that τ(b5, L2) = 2.

Thus x0 → (L2, b1;R − {x0}), a contradiction. Hence x0 6∈ {y1, y2}. W.l.o.g.,
say {a3, a5} = {y1, y2}. Then [a3, a4, a5, b2, b3] ⊇ C5, [x0, x3, b1, b5, b4] ⊇ C5 and
[x2, x1, x4, a1, a2] ⊇ C5, a contradiction.

3. Proof of Theorem 1

Let G be a graph of order 5k with minimum degree at least 3k. Suppose, for a
contradiction, that G 6⊇ kC5. We may assume that G is maximal, i.e., G+ xy ⊇
kC5 for each pair of non-adjacent vertices x and y of G. Thus G ⊇ P5⊎(k−1)C5.
Our proof will follow from the following three lemmas.

Lemma 3.1. For each s ∈ {1, 2, . . . , k}, G 6⊇ sB ⊎ (k − s)C5.

Proof. On the contrary, suppose that G ⊇ sB ⊎ (k − s)C5 for some
s ∈ {1, 2, . . . , k}. Let s be the minimum number in {1, 2, . . . , k} such that G ⊇
sB⊎(k−s)C5. Say G ⊇ sB⊎(k−s)C5 = {B1, . . . , Bs, L1, . . . , Lk−s} with Bi

∼= B
for i ∈ {1, 2, . . . , s}. Let R be the set of the four vertices of B1 whose degrees
in B1 are 2. By Lemma 2.2, Lemma 2.8 and the minimality of s, we see that
e(R,Bi) ≤ 12 and e(R,Lj) ≤ 12 for all i ∈ {2, 3, . . . , s} and j ∈ {1, 2, . . . , k − s}.
Therefore e(R,G) ≤ 12(k− 1)+ 8 = 12k− 4. As the minimum degree of G is 3k,
we obtain 12k − 4 ≥ e(R,G) ≥ 12k, a contradiction.

Lemma 3.2. There exists a sequence (D,L1, L2, . . . , Lk−1) of disjoint subgraphs
of G such that D ∼= K+

4
and Li

∼= C5 for all i ∈ {1, 2, . . . , k − 1}.

Proof. First, we claim that G ⊇ F ⊎ (k − 1)C5. We choose a sequence
(P,L1,L2, . . . , Lk−1) of disjoint subgraphs of G such that P ∼= P5 and Li

∼= C5 for
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all i ∈ {1, 2, . . . , k− 1} with
∑k−1

i=1
τ(Li) as large as possible. As G 6⊇ kC5 and by

Lemma 2.1(c), e(P, P ) ≤14 and so e(P,G − V (P )) ≥ 15k − 14 = 15(k − 1) + 1.
Thus e(P,Li) ≥16 for some i ∈ {1, 2, . . . , k−1}. By Lemma 2.3, [P,Li] ⊇ F ⊎C5

and so G ⊇ F ⊎ (k − 1)C5.

Next, we claim that G ⊇ F1 ⊎ (k − 1)C5. Assume for the moment that
G ⊇ F2 ⊎ (k − 1)C5 = {D,L1, L2, . . . , Lk−1} with D ∼= F2. Let R be the three
vertices of D with degree 2 in D. Then e(R,G − V (D)) ≥ 9k − 6 = 9(k −
1) + 3. Thus e(R,Li) ≥ 10 for some i ∈ {1, 2, . . . , k − 1}. By Lemma 2.4,
[D,Li] ⊇ F1 ⊎ C5 and so G ⊇ F1 ⊎ (k − 1)C5. Hence we may assume that
G 6⊇ F2 ⊎ (k− 1)C5. Then we choose a sequence (D,L1, L2, . . . , Lk−1) of disjoint
subgraphs of G such that D ∼= F and Li

∼= C5 for all i ∈ {1, 2, . . . , k − 1} with∑k−1

i=1
τ(Li) as large as possible. Then e(D,Li) ≥ 16 for some i ∈ {1, 2, . . . , k−1}.

By Lemma 2.5 and Lemma 3.1, we may assume that there exist two labellings
D = x0x1x2x3x4x1 and L1 = a1a2a3a4a5a1 such that e(x0, L1) = 0, e(x1x3, L1) =
10, N(x2, L1) = N(x4, L1) = {a1, a2, a4}, τ(L1) = 4 and a3a5 6∈ E. Then
e(x0x2a3a5, G−V (D∪L1)) ≥ 12k−17 = 12(k−2)+7. Thus e(x0x2a3a5, Li) ≥ 13
for some i ∈ {2, 3, . . . , k − 1}. By Lemma 2.6, we obtain [D,L1, Li] ⊇ F1 ⊎ 2C5

and so G ⊇ F1 ⊎ (k − 1)C5.

Suppose that G ⊇ K+
4

⊎ B ⊎ (k − 2)C5 = {D,B1, L1, L2, . . . , Lk−2} with
D ∼= K+

4
and B1

∼= B. Let R be the four vertices of B1 with degree 2 in B1.
Then either e(R,D) ≥ 13 or e(R,Li) ≥ 13 for some i ∈ {1, 2, . . . , k − 2}. By
Lemma 2.2, Lemma 2.7 and Lemma 3.1, we see that G ⊇ K+

4
⊎ (k− 1)C5. Hence

we may suppose that G 6⊇ K+
4
⊎B ⊎ (k − 2)C5.

We now choose an optimal sequence (D,L1, L2, . . . , Lk−1) of disjoint sub-
graphs of G withD ∼= F1 and Li

∼= C5 for all i ∈ {1, 2, . . . , k−1}. Then e(D,Li) ≥
16 for some i ∈ {1, 2, . . . , k − 1}. Say w.l.o.g. e(D,L1) ≥ 16. By Lemma 2.9 and
Lemma 3.1, we may assume that there exist two labellings L1 = a1a2a3a4a5a1
and V (D) = {x0, x1, x2, x3, x4} with E(D) = {x0x1, x1x2, x2x3, x3x4, x4x1, x2x4}
such that e(x0, L1) = 0, e(a1a2a4, D − x0) = 12, N(a3, L1) = N(a5, L1) =
{x2, x4}, τ(L1) = 4 and a3a5 6∈ E. Let R = {x0, x3, a3, a5} and G1 = [D,L1].
Then e(R,G1) ≤ 16 and so e(R,G−V (G1)) ≥ 12k−16 = 12(k−2)+8. This im-
plies that e(R,Li) ≥ 13 for some i ∈ {2, 3, . . . , k− 1}. Say w.l.o.g. e(R,L2) ≥ 13.
By Lemma 2.10, it follows that [G1, L2] ⊇ K+

4
⊎ 2C5 and so G ⊇ K+

4
⊎ (k− 1)C5.

Let σ = (D,L1, . . . , Lk−1) be an optimal sequence of disjoint subgraphs in G with
D ∼= K+

4
and Li

∼= C5 for all i ∈ {1, 2, . . . , k−1}. Say V (D) = {x0, x1, x2, x3, x4}
with N(x0, D) = {x1}. Let Q = D − x0 and T = Q − x1. Then Q ∼= K4 and
T ∼= C3.

Lemma 3.3. For each t ∈ {1, 2, . . . , k − 1}, the following statements hold:

(a) If e(x0, Lt) = 5, then e(Q,Lt) ≤ 5.
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(b) If e(x0, Lt) = 4, then e(Q,Lt) ≤ 9.

(c) If e(x0, Lt) = r, then e(Q,Lt) ≤ 18− 2r for r ∈ {1, 3} and if e(x0, Lt) = 2,
then e(Q,Lt) ≤ 15.

Proof. For convenience, we may assume Lt = L1 = a1a2a3a4a5a1. Let G1 =
[D,L1]. As G1 6⊇ 2C5, we see that if x0 → L1, then e(ai, Q) ≤ 1 for all ai ∈
V (L1) and so the lemma holds. Hence we may assume that x0 6→ L1 and so
e(x0, L1) ≤ 4.

To prove (b), say w.l.o.g. e(x0, L1 − a5) = 4. On the contrary, suppose
e(Q,L1) ≥ 10. It is easy to see that τ(a5, L1) = 0 for otherwise x0 → L1 and
so G1 ⊇ 2C5. As x0 → (L1, ai) for i ∈ {2, 3, 5}, e(ai, Q) ≤ 1 for i ∈ {2, 3, 5}. If
e(a5, Q) = 1 then [Q + a5] ∼= K+

4
and τ(x0a1a2a3a4x0) > τ(L1), contradicting

the optimality of σ. Hence e(a5, Q) = 0. It follows that e(a2, Q) = e(a3, Q) = 1
and e(a1a4, Q) = 8. Clearly, τ(x0a3a4a5a1x0) ≥ τ(L1) with equality only if
a2a4 ∈ E. As [Q + a2] ⊇ K+

4
and by the optimality of σ, we obtain a2a4 ∈ E.

Thus [a5, a4, a3, a2, x0] ⊇ K+
4

and [Q + a1] ∼= K5. By the optimality of σ, we
obtain [L1] ∼= K5, a contradiction.

To prove (c), we suppose, for a contradiction, that either e(x0, L1) = r and
e(Q,L1) ≥ 19 − 2r for some r ∈ {1, 3} or e(x0, L1) = 2 and e(Q,L1) ≥ 16. We
divide the proof into the following three cases.

Case 1. e(x0, L1) = 3 and e(Q,L1) ≥ 13. First, suppose that N(x0, L1) =
{ai, ai+1, ai+3} for some i ∈ {1, 2, 3, 4, 5}. Say w.l.o.g. N(x0, L1) = {a1, a2, a4}.
As x0 6→ L1, a3a5 6∈ E. Clearly, x0 → (L1, a3) and x0 → (L1, a5). Thus
e(a3, Q) ≤ 1 and e(a5, Q) ≤ 1. It follows that e(a1a2a4, Q) ≥ 11, e(x1, a1a4) ≥ 1
and e(x1, a2a4) ≥ 1. Thus [x0, x1, a1, a5, a4] ⊇ C5 and [x0, x1, a2, a3, a4] ⊇ C5. As
e(ai, T ) ≥ 2 for i ∈ {1, 2}, it is easy to see that e(a3a5, T ) = 0, i.e., N(a3a5, Q) ⊆
{x1}, for otherwise G1 ⊇ 2C5.

Let R = {x0, x3, a3, a5}. Then e(R,G1) ≤ 18 and so e(R,G − V (G1)) ≥
12k − 18 = 12(k − 2) + 6. Then e(R,Li) ≥ 13 for some i ∈ {2, 3, . . . , k −
1}. Say w.l.o.g. e(R,L2) ≥ 13. Let G2 = [G1, L2]. Then G2 6⊇ 3C5. Since
e(Q,L1) ≥ 13 and N(a3a5, Q) ⊆ {x1}, it is easy to check that if u → (L2;R −
{u}) for some u ∈ R, then G2 ⊇ 3C5. Hence u 6→ (L2;R − {u}) for all u ∈
R. By Lemma 2.1(d), there exist two labellings L2 = b1b2b3b4b5b1 and R =
{y1, y2, y3, y4} such that e(y1y2, L2−b5) = 8, e(y3, b1b5b4) = 3 and e(y4, b1b4) = 2.
If {y1, y2} = {x0, x3}, let {s, t} = {1, 2} with as ∈ I(x0x3, L1) and then we see
that [x0, as, x3, b2, b3] ⊇ C5, [a3, a5, b1, b5, b4] ⊇ C5 and [Q − x3 + a4 + at] ⊇
C5, a contradiction. If {y1, y2} = {x0, ai} for some i ∈ {3, 5}, we may assume
w.l.o.g. that {y1, y2} = {x0, a5} and then we see that [x0, a1, a5, b2, b3] ⊇ C5,
[a3, x3, b1, b5, b4] ⊇ C5 and [a2, a4, x1, x2, x4] ⊇ C5, a contradiction. If {y1, y2} =
{x3, ai} for some i ∈ {3, 5}, we may assume w.l.o.g. that {y1, y2} = {x3, a5} and
let {s, t} = {1, 4} be such that x3as ∈ E. Then we see that {x3, as, a5, b2, b3] ⊇
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C5, [x0, a3, b1, b5, b4] ⊇ C5 and [x1, x2, x4, a2, at] ⊇ C5, a contradiction. Hence
{y1, y2} = {a3, a5}. Then [a3, a4, a5, b2, b3] ⊇ C5, [x0, x3, b1, b5, b4] ⊇ C5 and
[x1, x2, x4, a1, a2] ⊇ C5, a contradiction.

Next, suppose that N(x0, L1) = {ai, ai+1, ai+2} for some i ∈ {1, 2, 3, 4, 5}.
Say w.l.o.g. N(x0, L1) = {a1, a2, a3}. Then e(a2, Q) ≤ 1 as G1 6⊇ 2C5 and so
e(Q,L1 − a2) ≥ 12. First, assume e(x1, a4a5) ≥ 1. Say w.l.o.g. x1a5 ∈ E.
Then [x0, x1, a5, a1, a2] ⊇ C5. Then e(a3a4, T ) ≤ 3 as G1 6⊇ 2C5. If we also
have x1a4 ∈ E, then similarly, e(a1a5, T ) ≤ 3 and so e(Q,L1 − a2) ≤ 11, a
contradiction. Hence x1a4 6∈ E. As e(Q,L1) ≥ 13, it follows that e(a1a5, Q) = 8,
e(a3a4, T ) = 3, x1a3 ∈ E and e(a2, Q) = 1. Clearly, [T + a4 + a5] 6⊇ C5 as G1 6⊇
2C5. This implies that e(a4, T ) = 0 and so e(a3, Q) = 4. Obviously, G1 ⊇ 2C5,
a contradiction. Hence e(x1, a4a5) = 0. Next, assume e(x1, a1a3) ≥ 1. Then
[x0, x1, a1, a2, a3] ⊇ C5 and so e(a4a5, T ) ≤ 3. It follows that e(Q,L1 − a2) ≤ 12,
a contradiction. Hence e(x1, L1 − a2) = 0. Thus e(T, L1 − a2) = 12. Obviously,
G1 ⊇ 2C5, a contradiction.

Case 2. e(x0, L1) = 2 and e(Q,L1) ≥ 16. First, suppose that N(x0, L1) =
{ai, ai+2} for some i ∈ {1, 2, 3, 4, 5}. Say, N(x0, L1) = {a1, a3}. Then e(a2, Q) ≤
1 and e(Q,L1 − a2) ≥ 15. Thus e(x1, a1a3) ≥ 1. Then [x0, x1, a1, a2, a3] ⊇ C5

and so e(a4a5, T ) ≤ 3. Thus e(Q,L1 − a2) ≤ 13, a contradiction. Therefore we
may assume w.l.o.g. that N(x0, L1) = {a1, a2}. First, assume x1a4 ∈ E. Then
[x0, x1, a4, a5, a1] ⊇ C5 and [x0, x1, a4, a3, a2] ⊇ C5. As G1 6⊇ 2C5, e(a2a3, T ) ≤ 3
and e(a1a5, T ) ≤ 3. Thus e(Q,L1) ≤ 14, a contradiction. Hence x1a4 6∈ E.
Next, assume e(x1, a3a5) ≥ 1. Say w.l.o.g. x1a5 ∈ E. Then [x0, x1, a5, a1, a2] ⊇
C5 and so e(a3a4, T ) ≤ 3. As e(Q,L1) ≥ 16, it follows that e(a5a1a2, Q) =
12, e(a3a4, T ) = 3 and x1a3 ∈ E. Thus e(x3, a2a5) = 2 and so G1 ⊇ 2C5, a
contradiction. Hence e(x1, a3a4a5) = 0. Thus e(T, L1) ≥ 14. This implies that
e(xi, a2a5) = 2 and a1xj ∈ E for some {i, j} ⊆ {2, 3, 4} with i 6= j. Consequently,
H ⊇ 2C5, a contradiction.

Case 3. e(x0, L1) = 1 and e(Q,L1) ≥ 17. Say w.l.o.g. x0a1 ∈ E. Suppose
e(x1, a3a4) ≥ 1. Say x1a3 ∈ E. Then [x1, x0, a1, a2, a3] ⊇ C5 and so e(a4a5, T ) ≤
3 as G1 6⊇ 2C5. As e(Q,L1) ≥ 17, it follows that e(a1a2a3, Q) = 12, e(a4a5, T ) =
3 and e(x1, a4a5) = 2. Then [x0, x1, a4, a5, a1] ⊇ C5 and [T, a2, a3] ⊇ C5, a
contradiction. Hence e(x1, a3a4) = 0. As e(Q,L1) ≥ 17, e(T, L1) ≥ 14. This
implies that e(xi, a2a5) = 2 and a1xj ∈ E for some {i, j} ⊆ {2, 3, 4} with i 6= j.
Consequently, H ⊇ 2C5, a contradiction.

We are now in the position to complete the proof of Theorem 1. Let Ar =
{Lt|e(x0, Lt) = r, 1 ≤ t ≤ k − 1} for each 0 ≤ r ≤ 5. Set pr = |Ar| for each
0 ≤ r ≤ 5. Clearly, p0+ p1+ p2+ p3+ p4+ p5 = k− 1. By Lemma 3.3, we obtain
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e(x0, G) = e(x0, D) +
5∑

r=0

∑

Lt∈Ar

e(x0, Lt)

= 1 + p1 + 2p2 + 3p3 + 4p4 + 5p5;(2)

e(D,G) = e(D,D) +
5∑

r=0

∑

Lt∈Ar

e(D,Lt)

≤ 14 + 20p0 + 17p1 + 17p2 + 15p3 + 13p4 + 10p5.(3)

Then we obtain

e(x0, G) + e(D,G) ≤ 15 + 20p0 + 18p1 + 19p2 + 18p3 + 17p4 + 15p5

= 18k + 2p0 + p2 − p4 − 3p5 − 3.(4)

As 3
∑

5

r=0
pr = 3k − 3 and e(x0, G) ≥ 3k, we obtain, by using (2), the following

1 + p1 + 2p2 + 3p3 + 4p4 + 5p5

≥ 3 + 3p0 + 3p1 + 3p2 + 3p3 + 3p4 + 3p5.(5)

This implies that 3p0+2p1+p2−p4−2p5+2 ≤ 0. Thus 2p0+p2−p4−3p5 ≤ −2.
Together with (4), we obtain e(x0, G) + e(D,G) ≤ 18k − 5. But by the degree
condition on G, we have e(x0, G) + e(D,G) ≥ 3k + 15k = 18k, a contradiction.
This proves Theorem 1.
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