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Abstract

We prove that if G is a graph of order 5k and the minimum degree of G
is at least 3k then G contains k disjoint cycles of length 5.
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1. INTRODUCTION AND NOTATION

A set of graphs is said to be disjoint if no two of them have any common vertex.
Corrddi and Hajnal [3] investigated the maximum number of disjoint cycles in
a graph. They proved that if G is a graph of order at least 3k with minimum
degree at least 2k, then G contains k disjoint cycles. In particular, when the
order of (G is exactly 3k, then G contains k disjoint triangles. Erdds and Faudree
[5] conjectured that if G is a graph of order 4k with minimum degree at least
2k, then G contains k disjoint cycles of length 4. This conjecture has been
confirmed by Wang [8]. El-Zahar [4] conjectured that if G is a graph of order
n=mn;+ng+- -+ n, with n; >3 (1 <14 < k) and the minimum degree of G
is at least [n1/2] + [na/2] + -+ + [ng/2], then G contains k disjoint cycles of

lengths ni,ns,...,nk, respectively. He proved this conjecture for £k = 2. When
ny = ng = --- = ng = 3, this conjecture holds by Corradi and Hajnal’s result.
When ny = no = --- = np = 4, El-Zahar’s conjecture reduces to the above

conjecture of Erdés and Faudree. Abbasi [1] announced a solution to El-Zahar’s
conjecture for very large n.

In this paper, we develop a constructive method to show that El-Zahar’s
conjecture is true for all n = 5k with n; =5 (1 < < k).
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Theorem 1. If G is a graph of order 5k and the minimum degree of G is at least
3k, then G contains k disjoint cycles of length 5.

We shall use the terminology and notation from [2] except as indicated. Let G
be a graph. Let u € V(G). The neighborhood of u in G is denoted by N(u).
Let H be a subgraph of G or a subset of V(G) or a sequence of distinct vertices
of G. We define N(u, H) to be the set of neighbors of u contained in H, and
let e(u, H) = |N(u, H)|. Clearly, N(u,G) = N(u) and e(u, @) is the degree of
uwin G. If X is a subgraph of G or a subset of V(G) or a sequence of distinct
vertices of G, we define N(X, H) = U,N(u, H) and e(X,H) =) e(u, H) where
u runs over all the vertices in X. Let x and y be two distinct vertices. We define
I(xy,H) to be N(z,H) N N(y,H) and let i(zy, H) = |I(xy, H)|. Let each of
X1, Xs,..., X, be a subgraph of G or a subset of V(G). We use [X1, Xo,...,X,]
to denote the subgraph of G induced by the set of all the vertices that belong
to at least one of X1, Xo,...,X,.. We use C; to denote a cycle of length i for all
integers ¢ > 3, and use P; to denote a path of order j for all integers j > 1. For
a cycle C of G, a chord of C' is an edge of G — E(C') which joins two vertices of
C, and we use 7(C) to denote the number of chords of C' in G. Furthermore, if
x € V(C), we use 7(x,C) to denote the number of chords of C' that are incident
with x. For each integer k > 3, a k-cycle is a cycle of length k. If S is a set of
subgraphs of G, we write G 2 S.

For an integer k > 1 and a graph G’, we use kG’ to denote a set of k disjoint
graphs isomorphic to G’. If Gy, ..., G, are r graphs and ki, ..., k, are r positive
integers, we use k1G1 W - - - W k.G, to denote a set of k1 + - - - + k,- disjoint graphs
which consist of k1 copies of GG1, ..., k,._1 copies of G,_1 and k, copies of G,.. For
two graphs Hi and Hs, the union of H; and Hy is still denoted by H; U Hy as
usual, that is, H; U Hy = (V(H1) UV (H2), E(H1) U E(H2)). Let each of Y and
Z be a subgraph of G, or a subset of V(G), or a sequence of distinct vertices
of G. If Y and Z do not have any common vertices, we define E(Y,Z) to be
the set of all the edges of G between Y and Z. Clearly, e(Y, Z) = |E(Y, Z)|. If
C =x1xo... 2,21 is a cycle, then the operations on the subscripts of the z;’s will
be taken by modulo r in {1,2,...,7}.

We use B to denote a graph of order 5 and size 6 such that B has two edge-
disjoint triangles. We use F' to denote a graph of order 5 and size 5 such that F’
has a vertex of degree 1 and a 4-cycle. Let F} be the graph of order 5 obtained
from F' by adding a new edge to F' such that the new edge joins the two vertices
of I whose degrees in F' are 2. Let F5 be the graph of order 5 and size 7 obtained
from K>3 by adding a new edge to K53 such that F» has two adjacent vertices
of degree 4. We use KZ to denote the graph of order 5 and size 7 such that K I
has a vertex of degree 1. Finally, we use K5 to denote a graph of order 5 with 9
edges.

Let {H, Lq,..., L} be aset of t+1 disjoint subgraphs of G such that L; = Cj
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fori=1,...,t. We say that {H, L1,..., L} is optimal if for any ¢ + 1 disjoint
subgraphs H',L,..., L, in [H,Ly,..., L] with H = H and L} = C5(1 < i < t),
we have that >>'_, 7(L}) < 3t 7(L;). Let L be a 5-cycle of G and H a subgraph
of order 5 in G. We write H > L if H has a 5-cycle L' such that (L") > 7(L).
Moreover, if 7(L") > 7(L), we write H > L.

Let L be a 5-cycle of G. Let w € V(L) and z¢g € V(G) — V(L). We write
xg — (L,u) if [L —u + x9] 2 Cs. Moreover, if [L — u + x¢] > L then we
write g = (L,u) and if [L — u + zo] > L then we write z9 — (L,u). In
addition, if it does not hold that zog % (L,u) then we write zg =5 (L, u). Clearly,
zo = (L,u) when zo % (L,u). If 29 — (L,u) for all u € V(L) then we write
xo — L. Similarly, we define 29 = L and zog — L. If [L —u + 29] 2 B, we write
zo = (L,u).

Let P be a path of order at least 2 or a sequence of at least two distinct
vertices in G — V(L + zp). Let X be a subset of V(G) — V(L + z¢) with | X| > 2.
We write g — (L, u; P) if xg — (L,u) and u is adjacent to the two end vertices
of P. In this case, if P is a path of order 4, then [z¢, L, P] O 2C5. We write
xo — (Lyu; X) if 2y — (L, u; zy) for some {z,y} C X with z # y. We write g —
(L; P) if xg — (L, u; P) for some v € V(L) and xo — (L; X) if xg — (L, u; X) for
some u € V(L). Similarly, we define the notation zo = (L; P) and x¢ = (L; X).
If it does not hold that zy = (L; P), we write g — (L; P). If it does not hold
that zg = (L; X), we write 29 5 (L; X).

2. SKETCH OF THE PROOF OF THEOREM 1 AND PRELIMINARY LEMMAS
2.1. Sketch of the proof of Theorem 1

Let G be a graph of order 5k with minimum degree at least 3k. Suppose, by way
of contradiction, that G 2 kC5. We may assume that G is maximal, i.e., G+zy D
kC’ for each pair of non-adjacent vertices x and y of G. Thus G O PsW(k—1)Cs.
Our first goal is to show that G 2 K & (k — 1)Cs. This will be accomplished
through a series of lemmas in Section 2.2. Say G 2 {D,Ly,...,Li_1} with
D~ K/ and L; 2 C5(1 < i < k). Let zg € V(D) with e(xo, D) = 1 and let
Q@ = D — xy9. We shall estimate the upper bound on 2e(zg, G) + e(Q, G) > 18k.
This needs an estimation on each 2e(xg, L;) + e(@, L;). The idea is to show
that if e(zo, L;) is increasing then e(Q, L;) is decreasing for otherwise [D, L;] 2
2C'5, a contradiction. This is accomplished in Lemma 3.3. It turns out that
2e(zp, G) + e(Q, G) < 18k, a contradiction.

2.2. Preliminary lemmas

Our proof of Theorem 1 will use the following lemmas. Let G = (V, E)) be a given
graph in the following.
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Lemma 2.1. The following statements hold:

(a) If P' and P" are two disjoint paths of G such that |V(P')] = 2, 2 <
|[V(P")| <3 and e(P', P") > 3, then [P', P"] D Cj4.

(b) If x and y are two distinct vertices and P is a path of order 3 in G such that
{z,y} NV (P) =0 and e(xy, P) > 5, then [x,y, P] contains a 5-cycle C such
that T(C) > 2.

(c) If D is a graph of order 5 with e(D) > 7, then D 2 Cs, unless D = K or
D= Fs.

(d) If R is a subset of V(G) and L is a 5-cycle of G — R such that |R| = 4
and e(R,L) > 13, then u — (L; R — {u}) for some u € R, or there exist
two labellings R = {y1,vy2,y3,ya} and L = bibabsbybsby such that N(yy, L) =
N(y2, L) = {b1,b2,b3,ba}, N(ys, L) = {b1,b5,ba} and N(ys,L) = {b1,bs}.

Proof. 1t is easy to check (a), (b) and (c). To prove (d), we suppose, for a
contradiction, that u 4 (L; R — {u}) for all u € R. Let R = {y1,y2,ys3,y4} be
such that e(y1,L) > e(y;, L) for all y; € R. As e(R,L) > 13, e(y1,L) > 4 and
there exists b € V(L) such that e(b,R — {y1}) > 2. If e(y1,L) = 5 then y; —
(L,b; R — {y1}), a contradiction. Hence we may assume that L = b1babsbsbsb;
and e(y1,b1babsby) = 4. Thus e(b;, R — {y1}) < 1 for i € {2,3,5}. Then 6 >
e(biby, R — {y1}) > 13 —4 — 3 = 6. It follows that e(bibs, R — {y1}) = 6 and
e(bi, R—{y1}) =1 fori e {2,3,5}. W.lo.g., say bays € E. Then e(bs,y3ys) =0
as y2 7 (L,b3; R — {y2}). Hence b3y, € E. W.lo.g., say bsys € E. Thus (d)
holds. [ ]

Lemma 2.2. Let D and L be disjoint subgraphs of G such that D =2 B and
L = C5. Say D = xoxixomoxsrexg. Suppose that e(D — xo,L) > 13. Then

Proof. Let H = [D, L]. On the contrary, suppose H 2 2C5. Then it is easy to
see that
x; 7 (Lyxjxs) and x; /A (Lyxjag) for

(1) {{e, 53 {s, 03} = {{1,2}, {3,4}}.

Let R = {x1,22,23,24}. W.lo.g., say e(x1,L) > e(x;, L) for all ; € R. Then
e(x1, L) >4. First, assume that e(z1, L) =5. By (1), I(zaz3, L) =I(x2x4, L) =0.
Thus e(zaz3, L) < 5 and e(xozy, L) < 5. Since e(R,L) > 13, it follows that
e(rs,L) > 3 and e(x3,L) > 3. As x3 /4 (L;z124), We see that e(x3, L) = 3.
Similarly, e(z4, L) = 3. Then e(x2,L) = 2. As z9 /4 (L;z123), we see that the
two vertices of N (x2, L) must be consecutive on L. Say N(z2, L) = {a1,as}. Then
[0, 21,2, a1,a2] 2 Cs and [x3,4,a3,a4,a5] O Cs, a contradiction. Therefore
e(xy1,L) = 4. Say N(z1,L) = {a1,a2,a3,as}. By (1), I(z2z;, {az2, as,as}) = 0 for
J € {3,4}. Thus e(xoxj, L) <7 for j € {3,4} and so e(xj, L) > 2 for j € {3,4}.
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First, assume e(xox;, L) = 7 for some j € {3,4}. Say e(xox3,L) = 7. Then
I(zoxs, L) = {a1,a4} and e(a;, xox3) = 1 for i € {2,3,5}. If e(x4,a2a3) > 1,
say w.lo.g. x4as € E, then [aj,a2,24,20,23] 2 Cs and so xsa5 ¢ E as H 2
2C5. Consequently, z3as € E and so H 2O 2C5 = {x3a5a1a22473, T1T0T2a4a321 },
a contradiction. Hence e(z4,a2a3) = 0 and so e(r4,a1a4) > 1. W.lo.g., say
xq4a1 € E. Then [r3,24,a1,a5,a4] 2 C5 and so e(xa,a2a3) = 0 as H 2 2C5.
Thus e(z3,az2a3) = 2. As e(x3, L) < e(x1,L) = 4, xsas ¢ E. Thus z9a5 € E,
and consequently, H D 2C5 = {x3z4a1a2a3rs, v120T2050421 }, a contradiction.
Therefore e(xpzj, L) < 6 for j € {3,4} and so e(xj,L) > 3 for j € {3,4}.
Similarly, if e(z3, L) =4 then e(x124, L) < 6, a contradiction. Hence e(x3, L) = 3.
Similarly, e(x4, L) = 3. Then e(z2,L) = 3 as e(R,L) > 13. Assume z2a5 € E.
Then e(as,z3x4) = 0 by (1). As e(xsxg, L) = 6, either e(xszry,ajaz) > 3 or
e(r3ry,agas) > 3. Say w.l.o.g. the former holds. Then [z3,x0,z4,a1,a2] 2 Cs
and [r1, 2, as5,a4,a3] 2 Cs, a contradiction. Hence zoa5 ¢ E. As e(xy,L) =
3, either e(z2,a1a3) = 2 or e(xy,agaq) = 2. W.lo.g., say the former holds.
As x9 A (Lyzxy) for j € {3,4}, e(az,x3x4) = 0. As e(xzxs, L) = 6, either
e(r3ry, agas) > 3 or e(xsry,araq) > 3. Thus either [z3,x4,a3,a4,a5] 2 C5 or
[x3,%4,a4,a5,a1] 2 Cs. In each situation, we see that H D 2C5, a contradiction.

|

Lemma 2.3. Let P and L be disjoint subgraphs of G such that P = P5 and
L = C5. Suppose that {P, L} is optimal, e(P,L) > 16 and [P,L] 2 2C5. Then
[P,L] D FWy(Cs.

Proof. Say P = xjxowszgxs with e(xy,L) > e(xs, L) and L = ajagazasasa;.
Then e(x1,L) > 1. Let H = [P,L]. On the contrary, suppose H 2 F W Cs.
Assume first that e(z1, L) = 1. Say x1a1 € E. As e(P,L) > 16 and e(z5,L) <1,
e (rorsxy, L) > 14. Thus e(xg,agaq) > 1. W.lo.g.,, say x2a3 € E. Then
[x1, 22, a3,a2,a1] 2 Cs. As e(xsxq, L) > 14 — e(x9, L) > 9, e(x3x4,a4a5) > 3. By
Lemma 2.1(a), [z5, 24, T3, a4,a5] 2 F and so H O FW(Cj5, a contradiction. Hence
e(x1, L) > 2.

As e(P,L) > 16, I(xox4,L) # 0 or I(z3z5,L) # 0. Therefore x; 4 L for
otherwise H O FWC(C5. Hence e(x1, L) < 4. We divide the proof into the following
cases.

Case 1. e(z1,L) = 4. Say N(z1,L) = {a1,a2,a3,a4}. Then [L —a;+x1] D F
for all a; € V(L). Thus I(zoxs, L) =0 as H 2 FWCs. As x1 4 L, 7(as, L) = 0.
Then z; % (L,as). By the optimality of {P,L}, [P — z; 4+ as] 2 P5 and so
e(as, roxs) = 0 and e(as, x3x4) < 1. Thus e(zaws, L) < 4 and so e(zgzy, L) > 8.
Suppose e(x2,L) > 1. Then e(x2,a2a4) > 1 or e(z2,a1a3) > 1. W.lo.g., say
the former holds. Then [z1,x2,a2,a3,a4] 2 C5. As H 2 F & C5 and by Lemma
2.1(a), we see that e(x3zs,aras) < 2. It follows that e(x3xs,azazas) = 6 and
e(roxs, L — az) = 4. Thus e(ag, x2x5) > 0. Then [P — 21 +az] 2 F. As 21 —
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(L,a2), H O FW(Cs, a contradiction. Hence e(x2, L) = 0. Similarly, if e(z5, L) = 4
then e(x4, L) = 0 and so e(P, L) < 16, a contradiction. Hence e(zs, L) < 3 and
so e(xszy, L) > 9. As e(as,xsxy) < 1, it follows that e(xsxy, L — as) = 8,
e(as,x3xq) =1 and e(x5, L) = 3. Then e(a;, x3x5) = 2 for some i € {2,3} and so
H D FW(Csas x; — (L,a;), a contradiction.

Case 2. e(x1,L) = 3. Then e(xs,L) < 3. First, suppose that the three ver-
tices in N(x1, L) are not consecutive on L. Say N(z1,L) = {a1,a2,a4}. Clearly,
I(xzozs,L) C {a4} since H 2 2C5 and H 2 F & Cs. Hence e(zaxs, L) < 6.
If zoa4 € E then [z1,29,a1,a5,a4] 2 C5. As H 2 F W Cs, e(x3zy,a2a3) <
2. Similarly, [z1,22,a2,a3,a4] 2 Cs and so e(xs3zy,ajas) < 2. Consequently,
e(P,L) < 15, a contradiction. Hence x2aq4 ¢ E. Thus e(zoxs, L) < 5 and so
e(xgzy, L) > 8. If e(xg, L) > 0, then [x1,x2, P'] D C5 where P’ = L — {a;,a;4+1}
for some {a;,a;+1} € V(L). As H 2 F W Cs, e(rsxyg,a;a;41) < 2. Con-
sequently, e(zzz4, P') = 6, e(xsxyg,a;a;41) = 2 and e(wows,L) = 5. Hence
e(ag, xoxs) = 1 for all a; € V(L). Thus [P — 21 + aj] 2 F and 1 — (L, a )
where a; € V(P') N {as,as}, a contradiction.

Therefore e(x2,L) = 0 and so e(xzxrs, L) = 10 and e(zs,L) = 3. Con-
sequently, H O 2C5 or H O F W (5, a contradiction. Therefore the three
vertices in N(z1,L) are consecutive on L. Say N(z1,L) = {a1,a2,a3}. Then
I(xoxs,L) C {ai,a3} since H 2 2C5 and H 2 F W C5. Thus e(zoxs, L) < 7
and so e(xzzy,L) > 6. Assume e(xg,aq4a5) > 1. Say w.lo.g xa4 € E.
Then [z1,z9,a2,a3,a4] 2 Cs and [x1,x92,a1,a5,a4] 2 Cs5. As H 2 F W Cs
and by Lemma 2.1(a), e(zsx4,a1a5) < 2 and e(xsxg,aza3) < 2. It follows
that e(zoxs, L) = 7, e(xsxq, L) = 6, e(aq,z3x4) = 2, and e(xoxs5,a1a3) = 4.
Then [z1,x5,a1,a2,a3] 2 Cs and [as, a4, x2, x3,24] 2 F, a contradiction. Hence
e(re,a4as) = 0 and so e(xg, L) < 3. Thus e(xzzy, L) > 7. Assume e(x2,a1a3) >
1. Then [z1,x2,a1,a2,a3] 2 Cs. Then e(xsx4,a4a5) < 2 as H 2 F ¢ Cs. Thus
e(rsxyq,ara2a3) > 5. As H 2 F W Cs and x1 — (L, ag), we have e(ag, x2x4) < 1.
Ase(P, L) > 16, it follows that e(ag, zox4) = 1, e(x3, a1a2a3) = 3, e(x324, agas) =
2 and e(z5,L) = 3. As H 2 FW (5 and 1 — (L, az), we see that zsas ¢ E.
Then e(zs,a4a5) > 1 and so [z3,24,x5,a4,a5] O F, a contradiction. Hence
e(zra,a1a3) = 0 and so e(x2, L) < 1. If e(xs, L) = 3 then we also have e(x4, L) <1
by the symmetry and so e(P, L) < 13, a contradiction. Hence e(x5, L) < 2. It fol-
lows that so e(xzx4, L) = 10, e(z2, L) = 1 and e(xs, L) = 2. Thus e(ag, voz4) = 2
and so H D F W (', a contradiction.

Case 3. e(x1,L) = 2. Then e(xs5,L) < 2 and e(x3zy4, L) > 7. First, suppose
that the two vertices in N(z1,L) are not consecutive on L. Say N(zi,L) =
{a1,a3}. Assume e(zg,aja3) > 1. Then [x1,x9,a1,a2,a3] 2 C5. As H 2 F' W
C5 and by Lemma 2.1(a), e(x3zy,aqas) < 2. Hence e(rsxy,ajazas) > 5. As
x1 — (L,a2) and H 2 F W Cs, e(ag, x2z4) < 1. As e(P,L) > 16, it follows
that e(ag, xoxy) = 1, e(xs,L) = 2, e(xe, L — a2) = 4, e(x3,a1a2a3) = 3 and
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e(r3zy, aqas) = 2. As [v3,24,75,a4,a5] 2 F, e(r5,a4a5) = 0 by Lemma 2.1(a).
As 1 — (L,a2) and H 2 F W (s, asxs € E. Thus e(zs,a1a3) = 2. It follows
that [z1,z2,a1,as5,a4] 2 Cs and [x3, x4, x5, a3,a2] 2 Cs, a contradiction. Hence
e(x2,a1a3) = 0. Thus e(xzxs, L) > 9. As e(xzzs, L) < 10, e(z2,L) > 2 and
so e(xa,a4as) > 1. Say w.lo.g. zoa4 € E. Then [r1,29,a4,a5,a1] 2 C5. As
H 2 F ¥ Cs; and by Lemma 2.1(a), e(zsxyg,a2a3) < 2 and so e(xsxg, L) < 8,
a contradiction. Therefore the two vertices in N(xp, L) are consecutive on L.
Say N(z1,L) = {a1,a2}. Assume x9aq4 € E. Then [r1,x2,a4,a5,a1] 2 C5 and
[€1,x2,a4,a3,a2] 2 Cs. Thus e(xzzy,aza3) < 2 and e(z3ryg,a1as) < 2 since
H 2 Fw(C5. Hence e(rsxy, L) < 6, a contradiction. Hence xsa4 ¢ E. Thus
e(rsxq, L) > 8. Assume e(xy,azas) > 1. Say xgas € E. Then [z1, 22, a3, a2, a1 2
C5 and so e(x3xy, aqas) < 2. It follows that e(xsxy, arasas) = 6, e(xrsxy, agas) =
2, e(ry, L —aq) = 4 and e(xs,L) = 2. As x9a5 € E and by the symmetry, we
also have e(rsxy4,asaiaz) = 6. Then H O F W (5, a contradiction. Therefore
e(x2,asas) = 0. It follows that e(x2,a1a2) = 2, e(xzxq, L) = 10 and e(z5, L) = 2.
Then H D F W (', a contradiction [

Lemma 2.4. Let D and L be disjoint subgraphs of G with D = Fy and L = Cs.
Let R be the set of the three vertices of D with degree 2 in D. If e(R,L) > 10,
then [D,L] D Fiy(Cs.

Proof. As e(R,L) > 10, e(u, L) > 4 for some u € R. Thus u — (L,v) for some
v e V(L) with e(v, R — {u}) > 1. Clearly, [D —u +v]| D Fj. ]

Lemma 2.5. Let D and L be disjoint subgraphs of G with D =2 F and L = Cs.
Suppose that {D, L} is optimal and e(D,L) > 16. Then [D, L] contains one of
FLuCs, FobwCs, BWCs and 2C5, or there exist two labellings D = xgr1xox3T471
and L = ajasasagasay such that e(xo,L) = 0, e(xixs3,L) = 10, N(zo,L) =
N(z4,L) = {a1,az2,a4}, 7(L) =4 and asas ¢ E.

Proof. Say H = [D,L]. Suppose that H does not contain any of Fj & Cs,
Fy, W Cs, BWC(C5 and 2C5. We shall prove that there exist two labellings of
D and L satisfying the property in the lemma. Say D = xgxrix2x3x42 and
L = ajasasagazay. Then xoxy & E. Let Q = xixowsxgxy. If e(xo, L) > 4, then
for each a; € V(L), [L—a;+x9] 2 Cs or [L—a;+xo] 2 Fy. Thus [Q+a;] 2 Cs and
so e(a;, Q) < 2 for each a; € V(L). Consequently, e(D, L) < 15, a contradiction.
Therefore e(zo, L) < 3. We divide the proof into the following cases.

Case 1. e(xg, L) = 0. First, suppose that e(xq, L) > 4 or e(x4, L) > 4. Say,
{a1,a2,a3,a4} CN(x9,L). Assume e(x1,asa3) > 1. Say w.lo.g. xjas € E.

Then [zg, 1, x2,a2,a1] 2 Fy and [xg,x1,22,a2,a3] 2 Fi. As H 2 F; W Cs,
we see that e(z3zy,asas) < 2 and e(zsxg,a1a4) < 2. As e(Q, L) > 16, it follows
that e(x122, L) = 10 and e(ag, z3x4) = 2. Thus [xg, 21, a2, 3, 24] 2 F} and z9 —
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(L,a2), a contradiction. Hence e(x1,a2a3) = 0. As e(x1,L) > 1, this argument
implies that e(zg, L) # 5. Similarly, e(z4, L) # 5. As e(Q, L) > 16, it follows that
e(r1,a1asaq) = 3, e(x3, L) = 5 and e(xyq, L) = 4. Then [zg, z1,22,a1,a2] 2 Fy
and [x3, x4, a3, a4, a5] 2 Cs, a contradiction. Hence e(x9, L) < 3 and e(xy4, L) < 3.
Consequently, e(xix3, L) = 10, e(z2, L) = e(z4, L) = 3. Then x2 is adjacent two
consecutive vertices of L. Say w.l.o.g. e(z2,aja2) = 2. Then [z, z1, 22, a1, a2] 2
Fy. Thus e(x4,a3a5) = 0 as H 2 F} W C5. Hence e(zy4,aja2aq) = 3. Similarly,
e(x2,a1a2aq4) = 3. Clearly, [D — x5 +a;] 2 F for i € {1,2}. As {D,L} is
optimal, z3 ™% (L, a;) for i € {1,2}. This implies that 7(ay, L) = 7(ag, L) = 2.
As [xg,x1,T2,01,a2] 2O F1, [x3,%4,a3,a4,a5] 2 Cs. This implies that agas ¢ E.
Therefore these two labellings satisfy the property described in the lemma.

Case 2. e(xg,L) = 1. Then e(Q,L) > 15. Say zpa; € E. First, suppose
e(r1,asaq) > 1. Say w.lo.g. xjas € E. Then [x1,x0,a1,0a2,a3] 2 Cs. By
Lemma 2.1(c), we have e(aqas, xox324) < 3 since H 2 2C5, H 2 F} W C5 and
H 2 F> W Cs. Thus e(agas, Q) < 5. Similarly, if x1a4 € E then e(agzas, Q) < 5
and so e(Q, L) < 14, a contradiction. Hence xjaqy ¢ E. Thus e(asas, Q) < 4
and so e(ajagas, Q) > 11. This implies that if e(ag, z123) = 2 then there is a
choice {i,j} = {2,4} such that e(x;,a1a3) = 2 and e(ag,z1z;23) = 3. Thus
[0, 1,24, T3, a2] 2O Fy and x; — (L, a2), a contradiction. Hence e(az, z123) = 1,
e(aras, Q) = 8, e(ag, rowy) = 2 and e(agas, Q) = 4 with asx; € E. Consequently,
[a4,a5,a1,x0,21] 2 F and [ag, a3, 2, x3,24] 2 Cs, a contradiction. Therefore
e(r1,asaq) = 0.

Next, suppose e(z1,ajas) = 2 or e(x1,a1a2) = 2. Say w.l.o.g. e(x1,a1a5) = 2.
Then [a4, a5, a1, 20, 2x1] 2 F1. Thus e(agas, roxs) < 2. Hence e(azas, Q) < 5 and
so e(ajazaq, vowsry) > 8. This implies that if xsa; € F then there is a choice
{i,7} = {2,4} such that e(as,z12;x3) = 3, e(x;,a1a4) = 2 and consequently,
H D F1W(C5, a contradiction. Hence azxs ¢ E and it follows that e(ay, xoxszs) =
3, e(as,xowy) = 2, e(ay,zox3xy) = 3, e(azas, Q) = 5 with asx; € E. Then
las, a2, a1, zo,x1] 2 F1 and |a4, a5, x2,23,24] 2 Cs, a contradiction. Therefore
e(r1,a1a5) < 1 and e(x1,a1a2) < 1. Thus e(z1,L) < 2. Assume that ajz3 €
E. Then zo 4 (L,a1) as H 2 2C5. Hence e(x2,a2a5) < 1, and similarly,
e(rs,a2a5) < 1. As e(Q,L) > 15, it follows that e(z1,a2as5) = 2, e(z3,L) = 5,
e(roxy,ara3aq) = 6 and e(x2,aza5) = e(xy4,a2a5) = 1. Say w.lo.g. aszy € E.
Then [D—xz9+4a5] 2 Fy and 9 — (L, as), a contradiction. Therefore ajxs ¢ E. If
x1a1 € E then e(z1,a2a5) = 0 and so e(a1, Q@ —x3)+e(L—a;,Q —x1) > 15. Then
[D—x9+a1] 2 Fy and x2 — (L, a1), a contradiction. Hence N(z1, L) C {ag,as}.
As e(Q,L) > 15, e(azas, xoxs) > 3 and e(agaq, z3z;) > 3 for i € {2,4}. Say
w.lo.g. xeas € E. Then [zg,x1,%2,a5,a1] 2 C5 and [r3,24,a2,a3,a4] 2 C3, a
contradiction.

Case 3. N(xo,L)

= {a;,aiy2} for some i € {1,2,3,4,5}. Say N(xo,L) =
{a1,a3}. Then e(Q,L) >

14. As H 2 205, e(a2,Q) < 2. We claim that
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e(zr1,a1a3) = 0. On the contrary, say e(z1,aiag) > 1. Then [zg,z1,a1,a2,as] 2
Cs. Since H 2 2C5, H 2 F1WC5 and H 2 FoWC5, we see that e(agas, zoxszy) < 3
by Lemma 2.1(c). Thus e(a4as,@Q) < 5 and e(ajas, @) > 14 — e(az, Q) —
e(agas, Q) > 7. As e(ajas, @) < 8, it follows that either e(a;,Q) = 4 and
x1a5 € E or e(as, Q) = 4 and z1a4 € E. Say w.l.o.g. the former holds. Then
[D—w3+a1] D) FQ, [:co,xl,al,a5,a4] D) F1 and [.%‘0,.%’1,@1,&5,33,‘] D) F2 fori e {2,4}.
Furthermore, if x1as € E then [z, x1,a1,a5,a2] 2 F» and [zg, 21, a1, a2, z;] 2 F»
for i € {2,4}. Assume for the moment that e(as,zox4) = 2. Then we see that
e(ag, xor4) = 0as H 2 F1W(Cs. If x1a9 € E, then e(ag, x2x4) = 0as H 2 FobW(C5
and for the same reason, [a3,a4,as,23,2;] 2 Cs for ¢ € {2,4}. This implies
that x3as ¢ E and so e(as,zoxq) > 1 since 8 > e(ajaz, Q) > 14 — e(az, Q) —
e(asas, Q) > 7. Thus z3zas ¢ FE since [as,aq,as5,x3,7;] 2 Cs for i € {2,4}.
It follows that {aszi,x3a4} C E. Consequently, [a1,as,aq,22,23] 2 C5 and
[X0, X1, x4, a2,a3] 2 Fa, a contradiction. Hence xias &€ E. As e(Q, L) > 14, it fol-
lows that asxs € F, e(ajas, Q) = 8, e(x1,a4a5) = 2 and e(agas, rorsxy) = 3. Say
w.l.o.g. asze € E. Then [ag,as,a4,x2,23] 2 Cs and so H O F, W C5, a contra-
diction. Hence e(as, zoxq) < 1. It follows that e(as, x2x4) = 1, e(as, z123) = 2,
e(az, Q) = 2 and e(aqas, Q) = 5 with e(x1,aqa5) = 2. Thus [zg, z1, as, a4, az] 2
C5 and so e(ag, x1x3) =2 as H 2 2C5. Say w.lo.g. asxa € E. As H 2 Fo 0 (5,
we see that [x9,x3,a5,a4,a3] 2 Cs and [as, a4, 2, 23,24] 2 Cs. This implies
that e(as,xox3) = 0 and aqxy & E. As e(aqas,vow3zy) = 3, it follows that
[a4, a5, x2, 3, 4] D C5 and so H D 2C5, a contradiction. Therefore e(z1,aja3) =
0. Assume e(x1,aq4a5) = 0. Ase(Q, L) > 14, it follows that e(zox3zy, L—ag) = 12
and e(az, Q) = 2. Thus [x2, 23,24, a4,a5] O K5 . As [z1,20,a1,a2,a3] O F, we
have 7(L) > 4 by the optimality of {D,L}. Consequently, z9o — (L,a,) for
some r € {4,5} and so H D 2C5 as [@Q + a,] 2 C5, a contradiction. Hence
e(r1,a4a5) > 1. Say w.lo.g. zia5 € E. Then [xg,x1,a5,a4,a3] 2 C5. Since
H 2 2C5, H2 F1WCs and H 2 F, W C5, we see that e(ajag, xox3ry) < 3
by Lemma 2.1(c). Thus e(ajaz,@) < 4 and so e(agasas, Q) > 10. Hence
e(asas, Q) > 7. As above, we shall have that [x2,x3,24,a4,a5] 2 Ky . This
implies that e(aqas, xoxzzy) # 6. Thus e(aqas, xoxszy) = 5, e(x1,a4a5) = 2,
e(as, rorsry) = 3 and e(ajaz, Q) = 4. Similarly, we shall have e(ay, zozszs) = 3
as [zo, 1, a4,a5,a1] 2 Cs. As e(agas, xox3ry) = 5, we may assume w.l.o.g. that
e(aq, xox3xy) = 3. Thus [as, aq, 2, x3,24] O Ky and [az, a1, a5, 21,20] 2 F. By
the optimality of {D, L}, we shall have 7(L) > 4. Thus zy — (L,a,) for some
r € {4,5} and so H D 2C5, a contradiction.

Case 4. N(xzo,L) = {ai,a;+1} for some i € {1,2,3,4,5}. Say, N(zo,L) =
{a1,a2}. First, suppose that zjay € E. Then [xg,21,a4,a5,a1] 2 C5 and
[xo,xl,a4,a3,a2] D (Cs. Since H 2 2C5, H 2 F1WCs and H 2 F> W (5, we
see that e(azas,@Q — 1) < 3 and e(ajas,@Q — 1) < 3 by Lemma 2.1(c). As
e(Q, L) > 14, it follows that e(x1, L) = 5, e(aq, Q) = 4, e(azaz,Q — x1) = 3 and
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e(aras,@ — x1) = 3. Then [zg,x1,a5,a1,a2] 2 C5 and so e(agas,Q — 1) < 3.
Thus e(asz, @ — 1) = 0 as e(as, Q — x1) = 3. Similarly, e(as, Q@ — z1) = 0. Thus
e(ajaz,Q —x1) = 6. Then [a1, x2,x3,a4,a5] 2 C5 and [as, az, To, x1,24] 2 Fo, a
contradiction. Hence zia4 € F.

Next, suppose e(x3,a1a2) = 2. Then e(x;,a1a3) < 1 and e(x;,az2a5) < 1 for
eachi€ {2,4} as H 22C5. Thus e(zax4, L—a4) <4 and so e(x1, L—ay)+e(xs, L)+
e(aq, xox4) > 10 Then e(z1,ajaz) >1. Thus [z;, x1,x0,a1,a2] 2 F; for i € {2,4}.
Clearly, e(zs,asas) > 1. Assume e(x3,azas) = 2. Then e(zaz4,azas) = 0 as
H 2 Fy W5 If e(aq,zomq) = 1, then e(x1,L —aq) = 4, e(x3,L) = 5 and
e(rary, araz) = 4. Thus [zg,x1,x4,a2,a3] O Fy and [z3,a4,a5,a1,22) O Cs, a
contradiction. Hence e(ay, zoxy) = 2. If x3a4 € E then [z9, 23, x4, a4, a;] 2 F; for
i € {3,5}. Ase(x1,asas) > 1, we see that H D F» W C5, a contradiction. Thus
x3ag € E, e(x1,L—ay) =4, e(x3, L—ay) = 4, e(ag, x2x4) = 2 and e(x224, a1a2) =
4. Thus [zg,z1,24,0a2,a3] 2 Fy and [z3,a1,a5,a4,22] 2 C5, a contradiction.
We conclude that e(zs,asas) = 1. Thus e(z1,L — aq) = 4, e(x3, L) = 4 and
e(aq, xory) = 2. Say w.l.o.g. xszas; € E. Then [x9,24,0a5,a4,23] 2 F» and
[0, 21, a1, a2,a3] 2 C5, a contradiction. Therefore e(x3,a1a2) < 1. Next, sup-
pose that e(xy,aja2) > 1 and e(z4,a1a2) > 1. Then [x;,x1,z0,a1,a2] 2 Cs
for i € {2,4}. Since H 2 2C5, H 2 F1 W C5 and H 2 F», W C5, we see
that e(zszi,agasas) < 3 for i € {2,4} by Lemma 2.1(c). Furthermore, if for
some i € {2,4}, say i = 2, we have e(x2,azasas) = 3, then [z2, a3, a4,as,a;] 2
Fy for j € {1,2} and so e(z3,ajaz) = 0 since H 2 Cs W F;. Consequently,
e(r1,L —aq) = 4, e(xawy, L) = 10 and so H O 2C5, a contradiction. There-
fore if e(xs,azasas) = 0 then e(x;,agzasas) < 2 for ¢ € {2,4}. Together with
x1a4 ¢ E and e(z3,a1a2) < 1, we see that if e(x3, asasas) = 0 or e(z3, azagas) > 1
then e(Q, L) < 13, a contradiction. Hence e(x3, asasas) = 1. It follows that
e(r1, L — aq) = 4, e(x3,a1a2) = 1, e(xox4,a1a2) = 4, e(xa,azaqa;) = 2 and
e(ry,azaqas) = 2. If e(xs,azas) = 1, then either [z9,x3,a3,a4,a5] 2 C5 or
[x2,x3,a3,a4,a5] 2 F1, and consequently, H O C5 W F}, a contradiction. Hence
xsay € E. Then we see that [ze,x3,a4,a5,a1] 2 Cs and [zg, 21,24, a2, a3] 2O Fy,
a contradiction. Therefore either e(za,aja2) = 0 or e(z4,a1a2) = 0. Say w.l.o.g.
e(ry,ar1az) = 0.

Finally, if e(x9,a1a2) > 1 then, as above, we would have e(z3z4, azasas) < 3
and so e(Q, L) < 13, a contradiction. Hence e(x2,a1as) = 0. As e(Q,L) > 14,
it follows that e(z1,L — a4) = 4, e(x3,L — a;) = 4 for some i € {1,2} and
e(roxy, asaqas) = 6. As [x9, x3, x4, a4, a5] 2 Cs5, we see H O 2C5, a contradiction.

Case 5. N(xg,L) = {a;,a;+1,a;+2} for some i € {1,2,3,4,5}.
Say N(zo,L) = {ai1,a2,a3}. Then for each i € {2,4,5}, [L — a; + o] 2 Cs or
[L —a; +xo] 2 F; and so e(a;, Q) < 2. Thus e(ajas, Q) > 7. Hence [Q +a;] D C5
for each i € {1,3}. Therefore [L — a; + xo] 2 C5 and [L — a; + xo] 2 B for each
i € {1,3}. This implies that 7(L) < 1. As e(ajasz,Q) < 8, e(agas, Q) > 3. Say
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w.lo.g. e(as, @) = 2. As [Q + a5] 2 C5, N(as,Q) = {x2, 74} or N(a;,Q) =
{z1,23}. First, assume N (a5, Q) = {x2,24}. Then [a4, a5, 22,23, 24] 2 F. As
e(arasz, Q) > 7, e(xr1,a1a3) > 1 and so [xg, 1, a1, a2,a3] 2 C' = C5 with 7(C") >
2, contradicting the optimality of {D,L}. Hence N(as,Q) = {x1,23}. Then
[ag,a5,x1,x;, 23] 2 F for each i € {2,4}. By the optimality of {D,L} and
Lemma 2.1(b), we get e(x;,a1a3) < 1 for each i € {2,4} and so e(ajas3,Q) < 6, a
contradiction.

Case 6. N(xg, L) = {a;,a;11,ai+3} for some i € {1,2,3,4,5}.
Say N(zo,L) = {a1,a2,a4}. Clearly, 9o — (L,a3) and z9y — (L,as). Thus
e(az, @) < 2 and e(as,Q) < 2 for otherwise H D 2C5. As H 2 2Cs, we
see that xg 4 L and so azas ¢ E. As e(Q,L) > 13, e(asas,Q) > 1. Say
w.l.o.g. e(as, @) > 1. Then [@ + as] D F. By the optimality of {D, L}, 7(L) >
T(zoaiagasasry). This implies that agas € E. Similarly, if e(as, @) > 1 then
arasz € E. Assume aja3 € E. Then e(as, Q) = 0 and so e(ajazaq, Q) > 11. Then
e(ar, Q) = 4 for some r € {1,2} and [L — a, + xo] 2 F. As 7(a,x12273240,) > 3,
it follows that 7(L) = 3 and so {aja4,az2a4} C E. Thus [L — a1 + o] 2 F3 and
[Q + a1] 2 Cs, a contradiction. Therefore ajag € E. Thus [L — a4 + xo] 2 Fb.
Hence [Q + a4] 2 C5 and so e(aq, Q) < 2. Consequently, e(ajas, Q) > 7 and so
[Q + a;] 2 Cs for each i € {1,2}. Hence ajay ¢ E and azay ¢ E for otherwise
H D F> ¥ C5. Hence 7(L) = 2. By the optimality of {D, L}, [Q + a;] 2 C with
C = C5 and 7(C) > 3 for each ¢ € {1,2}. This implies that e(a;, Q) < 3 for each
i € {1,2} and therefore e(ajaz, @) < 6, a contradiction. [

Lemma 2.6. Let D, L and Ly be disjoint subgraphs of G with D =2 F and
Ly & Ly = Cs. Suppose that L1 = ajasazagasay, V(D) = {xg, x1, 22, 23,24} and
E(D) = {zox1, x122, Tox3, x32T4, X421} Such that e(xg, L1) =0, and e(x123,L1) =
10, N(x2,L1) = N(z4,L1) = {a1,a2,a4}, 7(L1) = 4 and azas ¢ E. Suppose that
e(roroasas, Lo) > 13. Then [D, L1, Lo] contains either of F & 2C5 or 3Cs.

Proof. For the proof, we may assume that none of zgxs, z1x3 and zox4 is an edge
as they will not be used in the proof. Set G1 = [D, L], Go = [G1, Lg] and R =
{zg, z2,a3,as}. It is easy to see that for any permutation f of {x3,as, as}, we can
extend f to be an automorphism of G such that every vertex of G1 —{x2,as, a5}
is fixed under f. Therefore x2,a3 and as are in the symmetric position in the
following argument. On the contrary, suppose that Go 2 I} W2C5 and G2 2 3C5.
It is easy to check that if w — (L2; R — {u}) for some u € R then Gy 2 F; W 2C5
or Gy O 3C5. Therefore u 4 (Lg; R — {u}) for each v € R. By Lemma
2.1(d), there exist two labellings R = {yl,yg,yg,y4} and Lo = b1bobsbsbsby
such that €(y1y2,blb253b4) = 8, e(yg,b1b5b4) = 3 and e(y4,b1b4) =2 If o €
{y1,y2}, we may assume that {y;,y2} = {xo,z2}. Then [z, z1,x9,bs, b3] 2 Cs,
[as, as,b1,b5,b4] 2 Cs and [x3, 24, a1,a2,a4] 2 Cs, a contradiction. Hence xg ¢
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{y1,y2}. Say w.lo.g. that {yi,y2} = {as,as}. Thus [a3,a4,as,bs,b3] 2O Cs,
[0, 22,b1,b5,b4] 2 C5 and [x1, 24, 23, a1, a2] 2 Cs, a contradiction. [ |

Lemma 2.7. Let D and L be disjoint subgraphs of G with D = KI and L = B.
Let R be the set of the four wvertices of L with degree 2 in L. Suppose that
e(D,R) > 13. Then either [D,L] 2 Kj WCjs or [D,L] 2 2C5 or [D,L] 2 B&Cs.

Proof. Say H = [D,L]. On the contrary, suppose that H contains none of
KI W C5, 2C5 and BW C5. Say V(D) = {xg,x1,x2, 23,24} with e(zo,D) = 1
and zor; € E. Let Q = [z1,z2,x3,24]. Say L = apajagapasasag. Then Q = Ky
and R = {a1,a9,a3,a4}. If e(xp,R) > 3, say w.l.o.g. e(xg,ajazas) = 3, then
[L —a; +x9) 2 C5 and so Q + a; 2 Cs for each i € {1,2,4}. Consequently,
e(a;, Q) < 1 for all i € {1,2,4} and so e(D,R) < 11, a contradiction. Hence
e(rg, R) < 2. Suppose that e(xg, R) = 2. Then e(R,Q) > 11. First, assume
e(zp,a1a2)=1 and e(xg,asas)=1. Say w.l.o.g. e(xg,a1a3)=2. Then e(az, Q) <1
and e(aq,Q) < 1 as H 2 2C5. Consequently, e(R,Q) < 10, a contradiction.
Therefore we may assume w.l.o.g. that e(xo,a1a2) = 2. We claim e(x1,a1a2) =
0. To see this, suppose e(x1,ai1a2) > 1. Then [zg,z1,a1,a2,a0] 2 C5. Thus
e(asay, voxsry) < 2 for otherwise [as, a4, z2, x3,24] 2 C5 or [a3, a4, T2, T3, T4] 2
K. Thus e(azas,Q) < 4 and so e(ajas, @) > 7. Say w.lo.g. e(a1,Q) = 4.
Then [D — z; + a1] 2 K for each i € {2,3,4} and so [L — a; + ;] 2 Cs for
each i € {2,3,4}. Thus I(aga3,Q — x1) = 0 and so e(aza3,Q) < 5. Hence
e(as, Q) > 2. Similarly, e(as, Q) > 2. It follows that [as,a4,x2,23,24] D Cs
or [as,a4,x9,x3,24] 2 B, a contradiction. This shows that e(z1,a1a2) = 0.
Suppose e(a1,Q — x1) = 3 or e(az, Q@ — x1) = 3. Then [z, z1, i, a1,a2] 2 Cs
for each ¢ € {2,3,4}. Thus [z, 2}, a0, a3,a4] 2 Cs and [z;, 5, a, a3, as] 2 B for
each 2 < ¢ < j < 4. This implies that e(agayq, @ — 1) < 2. Hence e(ajaz, Q) > 7
and so e(x1,a1a2) > 1, a contradiction. Hence e(a;, @ — x1) < 2 for each i €
{1,2} and so e(aszas,Q) > 7. Say w.lo.g. e(as,Q) = 4. Then [D — z; + a4] D
K for each i € {2,3,4} and therefore I(aja3,Q —z1) = 0 as H 2 K; &
Cs. Thus e(ajas, Q) < 4 and so e(az,Q) > 3, a contradiction. Next, suppose
e(xg, R) = 1. Then e(Q, R) > 12. Say zpa; € E. Suppose e(z1,ai1a2) > 1. Then
[x0,x1,a1,a2,a9] 2 C5 or [xg,x1,a1,a2,a0] 2 B. Thus [xa,x3,24,a3,a4] 2 Cs.
This implies that e(azaq, @ —x1) < 3. Thus e(azaq, Q) < 5 and so e(ajaz, Q) > 7.
Thus [D — z; +a1] 2 Cs for all i € {2,3,4}. As H 2 2C5, I(azsa3,Q —x1) =
and I(agas4,@ — x1) = (. Hence e(agas,Q) < 5 and so e(as,Q) > 3. Then
I(aga4,@Q —x1) # 0, a contradiction. Hence e(x1,ajas) = 0. Thus e(ajaz, Q) < 6
and e(agas, Q) > 6. Then [x;,x},a3,a4,a0] 2 Cs for some 2 < ¢ < j < 4. Say
{i,j,k} = {2,3,4}. Then asxy ¢ E as H 2 2C5. Therefore e(ajaz, Q) < 5 and
so e(azaq, Q) > 7. Thus [z,, 2, a3,a4,a0] 2 Cs for all 2 < r < ¢t < 4. Therefore
e(az, @ —x1) =0 as H 2 2C5. Consequently, e(Q, R) < 11, a contradiction.
Finally, suppose e(zg, R) = 0. As e(R,Q) > 13, e(a;, Q) = 4 for some a; € R.
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Say e(a1,Q) = 4. Then I(agaz,Q — 1) =0 as H 7 K W Cs. Thus e(a4, Q) = 4
as e(R, Q) > 13. Similarly, e(as, Q) = 4. Then we readily see that H O K W Cj,
a contradiction. ]

Lemma 2.8. Let By and Bs be disjoint subgraphs of G such that By = B and
By = B. Let R be the set of the four vertices of By with degree 2 in By. Suppose
that B(R, Bg) > 13. Then [B1,Bz] 2 2C5 or [Bl,Bg] 2 BW(Cs.

Proof. On the contrary, suppose that [Bi, Ba] 2 2C5 and [By, Bs] 2 B W Cs.
Say Bl = apaiazapaszaqagn and B2 = boblbgbobgb4b0. Then R = {al,ag,ag,a4}
and e(R, By —by) > 9. This implies that e(a;a;+1,b;b;41) > 3 for some i € {1,3}
and j € {1,3}. Say w.lLo.g. e(ajaz,bibe) > 3. Then [ay, a9, by, b1,b2] 2 C5 and
[bl, bg, ap, ay, ag] 2 C5.

Therefore [ag, ag, aq,bs,bs] 2 Cs, [ag, as, aq,bs, bs] 2 B, [bo, b3, ba, a3, as] 2 Cs
and [bo, b3, by, as,as] 2 B. This implies that e(agaq, bsbs) < 1 and e(bg, azaq) < 1.
If e(ajag,bsby) > 3, then we also have that e(azaq,bibz) < 1 and it follows
that e(ajag, Ba) = 10 and e(asaq,b3by) = 1 as e(R, B2) > 13. Consequently,
[Bs — b, +a1] 2 C5 and [By — aj + b,] 2 C5 where r € {3,4} with e(b;, azas) = 1,
a contradiction. Hence e(ajaz, b3bs) < 2. Suppose e(azaq, bibe) > 3. Similarly, we
shall have e(ajag, bsbs) < 1, e(bp, a1az2) < 1 and so e(R, By) < 12, a contradiction.
Therefore, e(asaq,b1bs) < 2. Thus e(agayq, B2) < 4 and so e(ajaz, B2) > 9.
Consequently, e(ajaz, b3by) > 3, a contradiction. [ |

Lemma 2.9. Let D and L be disjoint subgraphs of G with D =2 Fy and L = Cs.
Suppose that {D, L} is optimal and e(D,L) > 16. Then [D, L] contains one of
KZ&JC%, KI&JB, 2C5 and BWCs, or there exist two labellings L = ajasasasazaq
and V(D) = {xg, x1,x2, x3, x4} with E(D) = {xoz1,x122, Tox3, T3T4, T4T1, T2T4}
such that e(xg, L) =0, e(ayazaq, D — o) = 12, N(as, D) = N(as, D) = {x2, 24},
7(L) =4 and azas ¢ E.

Proof. Say H = [D, L]. Say that H does not contain any of K; W Cs, K W B,
2C5 and B W Cs.

Let V(D) = {xg, x1, 22, 23,24}, E(D) = {xoz1, 2129, T2X3, T3T4, T4T1,T224} and
L = ajazasagasay, Set Q = [x1,x9,x3,x4]. Since H 2 2C5 and H 2 BW C5, we
see that for each a; € V(L), if z9 — (L,a;) or z9 = (L,a;) then e(a;, Q) < 2.
Thus z¢ 4 L for otherwise e(D, L) < 15. Hence e(x, L) < 4.

Assume e(zg, L) = 4. Say e(xg,a1a2asa4) = 4. As x9 4 L, 7(as,L) = 0.
Clearly, e(a;, Q) < 2 for each i € {2,3,5} since H 2 2C5. Thus e(ajas,Q) > 6.
Say e(a1,Q) > 3. Then [Q+a;] 2 C with C = Cy and 7(C) > 3. Then agay ¢ E
for otherwise [L — a1 + xo] 2 K. Thus 7(L) < 2. As [L —a; + 7] 2 Fi,
we see that 2 > 7(L) > 7(C) > 3 by the optimality of {D, L}, a contradiction.
Therefore e(xp, L) < 3 and so e(Q, L) > 13. Set T' = zoxsxsze. We divide the
proof into the following six cases.
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Case 1. N(zg,L) = {a;,a;+1,a;12} for some i € {1,2,3,4,5}.

Say N(xo,L) = {a1,a2,a3}. Then Q + az 2 C5 and so e(az, Q) < 2. As xg 4 L,
we see that 7(ag, L) < 1. If {aja4,azas} C FE then zy — (L,a;) or z9 —
(L,a;) and so e(a;, Q) < 2 for each a; € V(L). Consequently, e(Q,L) < 10,
a contradiction. Hence ajas ¢ E or agas ¢ E. Thus 7(L) < 3. Suppose
7(ag,L) = 1. Say w.lo.g. agas € E. Then xzy — (L,a;) for ¢ € {3,5}. Thus
e(a;, Q) < 2 for i € {3,5}. As e(Q,L) > 13, e(a1as,Q) > 7. Thus [Q + a,]
contains a 5-cycle with at least 4 chords, where e(a,,Q) = 4 with r € {1,4}.
As [L — ar + x9] 2 Fy and by the optimality of {D, L}, we have 7(L) > 4, a
contradiction. Hence 7(ag, L) = 0. Suppose ajaz € E. Then [L — a; + xo] 2 KI
for each i € {4,5}. As H 2 K] WCs, e(a;, Q) <2 forie {4,5}. Ase(Q,L) > 13,
e(aras, Q) > 7 and e(aqas, Q) > 3. Say w.lo.g. e(as,Q) = 2. As [Q + a5] 2 C5,
e(as, rowy) = 2. As e(x1,a1a3) > 1, [x1,x0,a1,a2,a3] 2 C5. Thus e(aq,T) =0 as
H 2 2C5. Tt follows that e(ajas, @) = 8 and aqx; € E. Consequently, H O 2Cs5,
a contradiction. Hence ajas ¢ E and so 7(L) < 1. Since [L — a; + xo] 2 F; for
each i € {4,5}, we see that [Q + a;] does not contain a 5-cycle with at least 2
chords for each i € {4,5} by the optimality of {D, L}. This implies that for each
i € {4,5}, e(a;, Q) < 2 and if e(a;, Q) = 2 then e(a;, xax4) = 2. Similar to the
above, we see that H D 2C5, a contradiction.

Case 2. N(xzg,L) = {a;,a;+1,a;+3} for some i € {1,2,3,4,5}.
Say N(zo,L) = {a1,a2,a4}. Then for each i € {3,5}, zo — (L,a;) and so
e(a;, Q) < 2. Thus e(ajazay, Q) > 13—e(asas, Q) > 9. Suppose that e(az, Q) = 2
or e(as, Q) = 2. Say w.l.o.g. e(as,Q) = 2. Then e(as, roxy) = 2 as [Q +as] 2 Cs.
If asxs € E then [a3,a4,a5,23,2;] 2 Cs for i € {2,4} and so e(x;,a1a2) = 0
for i € {2,4} since H 2 2C5;. Consequently, e(ajazaq,Q) < 8, a contradic-
tion. Hence agxs ¢ E. If agxy € E then [x1,x0,a1,a2,a3] 2 C5 and so
e(ag, T) = 0 as H 2 2C5. Thus e(ajazaq, Q) = 9 and so e(a3, Q) = 2. Con-
sequently, [@Q + a3] O C5, a contradiction. Hence N(a3,Q) C {z2,z4}. If
e(ry,a2aq) > 1 then [x1,20,a2,a3,a4] O C5 and so e(a1,T) = 0 as H 2 2C5.
It follows that e(ag,zox4) = 2 and e(agaq, @) = 8. Consequently, H D 2C5, a
contradiction. Hence e(x1,az2a4) = 0. Thus e(agaq, T) > 5 as e(ajazaq, Q) > 9.
Hence [z3, 24, a2, a3,a4] 2 Cs and [xg, 21,22, a5, a1] 2 Cs, a contradiction.

Therefore e(az, @) < 1 and e(as,Q) < 1. Then e(ajazaq,Q) > 11. Thus
e(araz,Q) > 7. Say w.lo.g. e(a;,Q) = 4. Then [as,a1, 72,23, 24] 2 K, . As
e(r1,azaq) > 1, [21, 20, 02,a3,a4] 2 C5 and so H D KZ W Cs, a contradiction.

Case 3. N(zo,L) = {ai,a;41} for some i € {1,2,3,4,5}. In this case,
e(Q, L) > 14. Say e(xo,a1a2) = 2. Suppose z1a4 € E. Then [x1, 0, a1, as5,a4] 2
Cs. As H does not contain one of 2C5 and KI W C5, we see that e(agas, T') < 2.
Similarly, e(aias,T) < 2 as [z1,x0,a2,a3,a4] 2 Cs. Thus e(Q,L) < 12, a con-
tradiction. Hence zj1a4 ¢ E. Next, suppose that e(x1,asas) > 1. Say w.l.o.g.
x1a3 € E. Then [x1,x0,a1,a2,a3] 2 C5. As H does not contain one of 2Cj5,
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B Cs and K W Cs, we have that e(asas, T) < 2 and either e(as,T) = 0
or e(as,T) = 0. If we also have zja5 € E then e(azas,T) < 2 and either
e(as, T) = 0 or e(as,T) = 0. Consequently, it follows, as e(Q,L) > 14, that
e(as,T) = 2, e(as,T) = 2, e(as,T) = 0 and e(ajaz,Q) = 8. Then z; — (L, a1)
for some x; € V(T') with e(x;, azas) = 2 and so H D 2C5, a contradiction. Hence
zia; ¢ E. Thus e(ajazas, @) > 12. Then x3 — (L,a2) and so H 2 2C5, a
contradiction. We conclude that e(z1, azasas) = 0.

As e(Q,L) > 14, e(zaxyg,a1a2) > 1. Say w.lo.g. e(xa,aiaz) > 1. Then
[x2,x1,x0,a1,a2] 2 C5. As H 2 2C5 and by Lemma 2.1(c), e(x3z4, azasas) < 4.
Thus e(asaqas, Q) < 7. Hence e(ajaz,Q) > 7. Say w.lo.g. e(a1,Q) = 4. Then
z; & (L,a1) for each x; € V(T) since H 2 2C5. This implies that I(asas,T) = 0)
and so e(agas,Q) < 4. Consequently, e(asaq,T) = 6 as e(Q,L) > 14. Thus
[as, as, a3, v3,74) 2 K and [29,21, 20, az2,a1] 2 Cs, a contradiction.

Case 4. N(xzg,L) = {ai,a;+2} for some i € {1,2,3,4,5}. Say, N(zg,L) =
{aj,a3}. The e(a2,Q) < 2 as H 2 2C5. First, suppose e(x1,aia3) > 1.
Then [x1, g, a1,a2,a3] 2 C5 and therefore e(asas,T) < 2. Thus e(ajasz, Q) >
14 — 2 — 2 — e(x1,a4a5) > 8. It follows that e(ajas, Q) = 8, e(az, Q) = 2,
e(agas,T) = 2 and e(z1,a4a5) = 2. Consequently, H DO 2C5, a contradiction.
Hence e(x1,a1a3) = 0. Next, suppose e(z1,a4a5) > 1. Say w.l.o.g. xjaq4 € E.
Then [z1,x0,a1,a5,a4] 2 C5 and so e(agas,T) < 2. Thus e(ajasaqs,Q) >
14 — 3 = 11. It follows that e(asas,@Q) = 8, e(a;,T) = 3, zr1a2 € E and
e(azas, T) = 2. Then [D—x1+a1] 2 K and [L— a1 +x1] 2 Cs, a contradiction.
Hence e(x1,a4a5) = 0. As e(Q, L) > 14, it follows that e(T, L — as) = 12 and
e(az, Q) = 2. Then we readily see that H D 2C5, a contradiction.

Case 5. e(xo,L) = 1. Then e(Q,L) > 15. Say zpa; € E. First, sup-
pose e(z1,azaq) > 1. Say w.lo.g. zjas € E. Then [z1,x0,a1,a2,a3] O Cs.
Thus e(aqas,T) < 2 and so e(agas, Q) < 4. If we also have zjay € E then
e(agas,T) < 2 as [x1, To, a1, as, as4] 2 Cs. But then we obtain e(Q, L) < 12, a con-
tradiction. Hence zjaq4 € E. As e(Q, L) > 15, it follows that e(ajazas, Q) = 12,
e(agas, T) = 2 and x1a5 € E. Then [a4, a5, 1, T0,a1] 2 Fy and [T, a9, a3] 2 Ks.
By the optimality of {D, L}, [L] = K5 and so H D 2C5, a contradiction. Hence
e(r1,asaq) = 0. Then e(agas, Q) > 15 — e(ajazaq, Q) > 15 — 10 = 5. Thus
e(raxy, agas) > 1. Say w.lo.g. xea; € E. Then [zg,21,22,a5,a1] 2 Cs. As
H 2 2C5, e(azaq, z3xy) < 2. Clearly, e(agaszaq, x122) < 4. Then e(ajas, Q) >
15 — 6 — e(as, x3z4) > 7 and so e(a1,T) > 2. Suppose that a;zs € E. Then
x; # (Lyap) for all z; € V(T) for otherwise H O 2C5. This implies that
I(azas,T) = 0. As xoas €, x2a2 € E and so e(agazaq, v122) < 3. As e(Q,L) >
15, it follows that e(ajas, Q) = 8, e(agagzay, x3x4) = 4 and so e(x3xy4,azays) = 4.
Thus [ag, a3, aq,73,74] 2 K and so H DO K} W Cs, a contradiction. Hence
aixs ¢ E. Thus e(ajas, Q) = 7. It follows that e(a;,Q — x3) = 3, e(as, Q) = 4,
e(agaq, x3x4) = 2, e(as,x3xq4) = 2, e(x2,asaq) = 2 and e(ag, x122) = 2. Then
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[x2, x1, %0, a1,a2] 2 Cs and [as, a4, a3, x3, 4] 2O Cs, a contradiction.

Case 6. e(ro,L) = 0. As H 2 K, & C5, we see that for each a; € V(L),
if e(a;,Q — x3) = 3 then x5 4 (L,a;). Since e(a;,Q) = 4 for some a; € V(L)
as e(Q, L) > 16, it follows that x3 4 L and so e(z3, L) < 4. First, suppose
e(rs, L) =4. Say e(x3,L —as) =4. Then e(a;,Q—x3) <2 for each
i€{2,3,5}. Ase(Q, L) > 16, it follows that e(a;, @ —x3) = 2 for i € {2,3,5} and
e(araq,Q — x3) = 6. If z1a5 € E, then e(as,z1w2) = 2 or e(as, x124) = 2. Say
w.lo.g. e(as,r179) = 2. Then [xo,21,22,a1,a5] 2 K and [x3,74, a2, a3,a4] 2
C5, a contradiction. Hence e(as, zoxy) = 2. Then [D — z3 + as] O Fi. By the
optimality of {D, L}, 7(L) > 7(z3ajazsasasxs). This implies that 7(as, L) = 2
and so 3 — (L, a1), a contradiction.

Next, suppose that e(zs, L) =3 and N(zs3,L) = {ai, ai+1,a;+3} for some
i € {1,2,3,4,5}. Say N(z3,L) = {a1,a2,a4}. Then e(az,Q — x3) < 2 and
e(as, Q@ —x3) < 2. As e(Q,L) > 16, it follows that e(ajasas, Q@ — x3) = 9,
e(as,Q — x3) = 2 and e(as,Q — x3) = 2. If e(x1,a3a5) > 1, then we may
assume w.l.o.g. that e(ag,z1m2) = 2. Consequently, [z, 1, T2,a2,a3] 2 Kj
and [z3,24,a1,a5,a4] 2 Cs, a contradiction. Hence e(asas, xoxy) = 4. Clearly,
[x0,x1, T2, a2,a3] 2 Fy and 7(x4x301050424) > 3. Thus 7(L) > 3 by the opti-
mality of {D,L}. As z3 /4 (L,a1), asas € E. Thus ajaq € E or agay € E. Say
w.l.o.g. ajaq € E. Then 7(x423010504274) = 4. Thus 7(L) = 4 and so the lemma
holds.

Next, suppose that N(z3,L) = {a;,a;+1,a;4+2} for some i € {1,2,3,4,5}.
Say N(z3,L) = {a1,a2,a3}. Then e(az,@ — x3) < 2. As e(D,L) > 16, either
e(aras,Q—x3) = 6 or e(azas, @ —x3) = 6. Say w.l.o.g. e(ajas,Q—=x3) = 6. Then
(20, 21, i, a1,a5) 2 K and so [z3,2},a2,a3,a4] 2 Cs for each {i,j} = {2,4}.
This implies that e(aq, x224) = 0 and so e(D, L) < 15, a contradiction.

Next, suppose that e(zs,L)=2 and N(z3,L)= {a;,a;42} for some
i € {1,2,3,4,5}. Say N(z3,L) = {a1,a3}. Then e(az,Q — z3) < 2. As
e(Q,L) > 16, it follows that e(L — a2,@Q — x3) = 12 and e(a2,Q — z3) = 2.
Then [xg, 71, T2, a4, a5] 2 K and [r3, 24,01, a2, as] 2 Cs, a contradiction.

Next, suppose that e(xs, L) = 2 and N(z3,L) = {a;,a,+1} for some i €
{1,2,3,4,5}. Say N(z3,L) = {a1,a2}. Ase(Q, L) > 16, either e(aias, Q—z3) =6
or e(agas, Q@ —x3) = 6. Say w.l.o.g. e(ajas,@—x3) = 6. Then [xg, 1, z;, a1, a5] 2
K and so [zj,73,a2,a3,a4] 2 Cs for each {i,j} = {2,4}. This implies that
e(aq, x224) = 0. Consequently, e(Q, L) < 15, a contradiction.

Finally, we have e(x3, L) = 1. Then e(L,Q —x3) = 15, clearly, H 2 K} WCs,
a contradiction. [

Lemma 2.10. Let D, Ly and Lo be disjoint subgraphs of G with D = Fy and
Ly = Ly =2 Cs. Suppose that Ly = ajasasasazay, V(D) = {xg, x1,x2, 3,24} and
E(D) = {xox1, 2122, ToT3, T3X4, X421, T2Z4} such that
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e(zro, L1) =0, e(ajagas, D—x0) =12, N(ag, D)= N(as, D) ={x2, x4}, 7(L1) =4
and aszas & E. Suppose that {D, Ly, Ly} is optimal and e(zgrsasas, La) > 13.
Then [D, L1, Ls] contains either Kj W 2C5 or 3Cs.

P’I"OOf. Let Gl = [D,Ll], G2 = [D,Ll,LQ] and R = {$0,$3,a3,a5}. On the
contrary, suppose that G2 does not contain any of Kj W 2C5 and 3C5. It is
easy to see that for any permutation f of {z3,as,as}, we can extend f to be an
automorphism of G such that any vertex in G; — {z3,as3, a5} is fixed under f.
Thus z3, az and aj are in the symmetric position in the following argument. It
is easy to check that if u — (Lo; R — {u}) for some u € R, then G2 2 K; W 2C;
or G O 3C5. Thus u 4 (L2; R — {u}) for each v € R. By Lemma 2.1(d),
there exist two labellings R = {y1,92,y3,ya} and Lo = b1babsbsbsby such that
6(y1y2,b1bzbgb4) = 8, 6(y37b1b5b4) = 3 and e(y4,blb4) =2 1If o € {yl,yg}, we
may assume w.l.o.g. that {zo,23} = {y1,y2}. Then [G1 —xo+bs] O F1 & K .
By the optimality of {D, Ly, Ly}, z9 =5 (Lg, bs). This implies that 7(bs, Ly) = 2.
Thus o — (L2,b1; R — {x0}), a contradiction. Hence z¢ & {y1,y2}. W.lo.g.,
say {as,as} = {y1,y2}. Then [as, a4, as,ba,b3] 2 Cs, [x0,x3,b1,b5,b4] 2 C5 and
[x2, x1, %4, a1,a2] 2 Cs, a contradiction. [

3. PROOF OF THEOREM 1

Let G be a graph of order 5k with minimum degree at least 3k. Suppose, for a
contradiction, that G 2 kC5. We may assume that G is maximal, i.e., G + zy D
kC’ for each pair of non-adjacent vertices x and y of G. Thus G O PsW(k—1)Cs.
Our proof will follow from the following three lemmas.

Lemma 3.1. For each s € {1,2,...,k}, G 2 sBW (k— s)Cs.

Proof. On the contrary, suppose that G D sB W(k—s)Cs for some
s € {1,2,...,k}. Let s be the minimum number in {1,2,...,k} such that G 2
sBW(k—s)Cs. Say G O sBW(k—s)Cs ={Bi,...,Bs,L1,...,Ly_s} with B; 2 B
for i € {1,2,...,s}. Let R be the set of the four vertices of B; whose degrees
in By are 2. By Lemma 2.2, Lemma 2.8 and the minimality of s, we see that
e(R,B;) <12 and e(R,L;) <12 foralli € {2,3,...,s} and j € {1,2,...,k — s}.
Therefore e(R,G) < 12(k— 1)+ 8 = 12k — 4. As the minimum degree of G is 3k,
we obtain 12k — 4 > e(R, G) > 12k, a contradiction. ]

Lemma 3.2. There exists a sequence (D, L1, Lo, ..., Li_1) of disjoint subgraphs
of G such that D =2 K and L; = Cs for alli € {1,2,...,k—1}.

Proof. First, we claim that G2 FW(k—1)Cs. We choose a sequence
(P,Ly,Lo, ..., Li_1) of disjoint subgraphs of G such that P = P; and L; = Cj for
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alli € {1,2,...,k—1} with Zfz_ll 7(L;) as large as possible. As G 2 kC5 and by
Lemma 2.1(c), e(P, P) <14 and so e(P,G — V(P)) > 15k — 14 = 15(k — 1) + 1.
Thus e(P, L;) >16 for some i € {1,2,...,k—1}. By Lemma 2.3, [P, L;] O F&(C5
and so G O F W (k—1)Cs.

Next, we claim that G O Fy W (k — 1)C5. Assume for the moment that
G2 F,W(k—1)Cs ={D,Ly,La,...,Li_1} with D = F5. Let R be the three
vertices of D with degree 2 in D. Then e(R,G — V(D)) > 9%k — 6 = 9(k —
1) + 3. Thus e(R,L;) > 10 for some i € {1,2,...,k — 1}. By Lemma 2.4,
[D,L;] 2 F1 ¥C5 and so G O Fy W (k — 1)C5. Hence we may assume that
G 2 Fo W (k—1)C5. Then we choose a sequence (D, Ly, Lo, ..., Li_1) of disjoint
subgraphs of G such that D = F and L; = C; for all i € {1,2,...,k — 1} with
Ef:_ll 7(L;) as large as possible. Then e(D, L;) > 16 for some i € {1,2,...,k—1}.
By Lemma 2.5 and Lemma 3.1, we may assume that there exist two labellings
D = zorix9231421 and L1 = ajagasagsasay such that e(zg, L1) = 0, e(x123, L1) =
10, N(z9,L1) = N(z4,L1) = {a1,a2,a4}, 7(L1) = 4 and agas ¢ E. Then
e(roxeasas, G—V(DUL1)) > 12k—17 = 12(k—2)+7. Thus e(zoz2agas, L;) > 13
for some i € {2,3,...,k — 1}. By Lemma 2.6, we obtain [D, L1, L;] D F; W 2C5
and so G 2 F1 W (k—1)Cs.

Suppose that G 2 K W BW (k — 2)Cs = {D,B1,L1,La,..., L2} with
D= KI and By = B. Let R be the four vertices of By with degree 2 in Bj.
Then either e(R,D) > 13 or e(R, L;) > 13 for some i € {1,2,...,k — 2}. By
Lemma 2.2, Lemma 2.7 and Lemma 3.1, we see that G O K & (k —1)Cs. Hence
we may suppose that G 2 K & Bd (k — 2)Cs.

We now choose an optimal sequence (D, Ly, Lo, ..., Li_1) of disjoint sub-
graphs of G with D = Fy and L; = Cs for alli € {1,2,...,k—1}. Then e(D, L;) >
16 for some i € {1,2,...,k —1}. Say w.l.o.g. e(D, L;) > 16. By Lemma 2.9 and
Lemma 3.1, we may assume that there exist two labellings L1 = ajasazaqasaq
and V(D) = {xg, 1, x2,x3, 24} with E(D) = {zox1, x172, T2T3, T3T4, T4T1, T2Ty }
such that e(zo,L1) = 0, e(ajagaq, D — x9) = 12, N(as,L1) = N(as,L1) =
{z2,24}, 7(L1) = 4 and agas ¢ E. Let R = {xo,x3,as,a5} and G; = [D, Ly].
Then e(R, G1) < 16 and so e(R, G — V(G1)) > 12k — 16 = 12(k —2) +8. This im-
plies that e(R, L;) > 13 for some i € {2,3,...,k—1}. Say w.lLo.g. e(R, L2) > 13.
By Lemma 2.10, it follows that [G1, L2] 2 K ¥2C5 and so G 2 K W (k—1)Cs.

|

Let 0 = (D, Ly,...,Lk_1) be an optimal sequence of disjoint subgraphs in G with
D~ K] and L; 2 Cs for alli € {1,2,...,k—1}. Say V(D) = {x0, 71, T2, T3, 74}
with N(zg,D) = {z1}. Let @ = D —xp and T = Q — z1. Then @ = K, and
T Cs.

Lemma 3.3. For eacht € {1,2,...,k— 1}, the following statements hold:
(a) If e(xo, Li) = 5, then e(Q, Ly) < 5.
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(b) If e(xo, Ly) = 4, then e(Q, L) < 9.
(¢) If e(xg, Ly) =1, then e(Q, Ly) < 18 — 2r for r € {1,3} and if e(xg, Ly) = 2
then e(Q, L) < 15.

Proof. For convenience, we may assume L; = L1 = ajasagasasa;. Let G =
[D,L1]. As G1 2 2C5, we see that if g — L1, then e(a;,@) < 1 for all a; €
V(Ly) and so the lemma holds. Hence we may assume that zo /4 L; and so
e(xo, L) < 4.

To prove (b), say w.l.o.g. e(xzo,L1 —as) = 4. On the contrary, suppose
e(Q, L) > 10. It is easy to see that 7(as,Lq) = 0 for otherwise g — L; and
so G1 2 2C5. As x9 — (L1,a) for i € {2,3,5}, e(a;, Q) < 1 fori € {2,3,5}. If
e(as, Q) = 1 then [Q + a5] = KI and 7(zpajagasasxrg) > 7(L1), contradicting
the optimality of o. Hence e(as, @) = 0. It follows that e(az, @) = e(a3, Q) = 1
and e(ajaq,Q) = 8. Clearly, 7(xzoazasasaixo) > 7(L1) with equality only if
asas € E. As [Q + as] D K, and by the optimality of o, we obtain asay € E.
Thus [as, a4, a3, a2,70] 2 K, and [Q + a1] & K5. By the optimality of o, we
obtain [L1] & K3, a contradiction.

To prove (c), we suppose, for a contradiction, that either e(zg, L1) = nd

e(Q, L) > 19 — 2r for some r € {1,3} or e(zo,L1) = 2 and e(Q, L1) > 1
divide the proof into the following three cases.

Case 1. e(xg,L1) = 3 and e(Q, L1) > 13. First, suppose that N(zg, L1) =
{a;,ai+1,a;43} for some i € {1,2,3,4,5}. Say w.lo.g. N(xo,L1) = {a1,a2,a4}.
As z9g 4 Li, asas ¢ E. Clearly, xg — (L1,a3) and 9 — (L1,a5). Thus
e(as, Q) <1 and e(as, Q) < 1. It follows that e(ajazaq, Q) > 11, e(z1,a1a4) > 1
and e(z1, agaq) > 1. Thus [zg,x1,a1,as5,a4] 2 Cs and [z, 21, a2, a3, aq4] D C5. As
e(a;, T) > 2 for i € {1,2}, it is easy to see that e(aszas,T) =0, i.e., N(azas, Q) C
{z1}, for otherwise G; 2 2Cs5.

Let R = {x0,z3,a3,a5}. Then e(R,G1) < 18 and so e(R,G — V(Gy)) >
12k — 18 = 12(k — 2) + 6. Then e(R,L;) > 13 for some i € {2,3,...,k —
1}. Say w.lo.g. e(R,Ly) > 13. Let Gy = [G1,Ls]. Then Gy 2 3Cs. Since
e(Q, L) > 13 and N(asas, Q) C {1}, it is easy to check that if u — (Lo; R —
{u}) for some u € R, then G2 O 3C5. Hence u 4 (L2; R — {u}) for all u €
R. By Lemma 2.1(d), there exist two labellings Ly = bibabsbsbsby and R =
{y1,Y2,y3,ya} such that e(y1y2, L2 —bs) = 8, e(ys, b1b5b4) = 3 and e(y4, b1by) = 2.
If {y1,y2} = {xo, 23}, let {s,t} = {1,2} with as; € I(zors, L1) and then we see
that [xg,as,ﬂjg,bg,bg] D (5, [ag,a5,b1,b5,b4} DO (5 and [Q — T3 + a4 + at] D)
C5, a contradiction. If {y1,y2} = {x0,a;} for some i € {3,5}, we may assume
w.l.o.g. that {y1,y2} = {20,a5} and then we see that [z, a1, as,bs,bs] 2 Cs,
[as, x3,b1,b5,b4) D C5 and [az, a4, x1, 2, 24] O Cs, a contradiction. If {yi,y2} =
{z3,a;} for some i € {3,5}, we may assume w.l.o.g. that {y1,y2} = {x3,a5} and
let {s,t} = {1,4} be such that x3as € E. Then we see that {x3,as, as, ba, b3] 2
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Cs, [zo,a3,b1,b5,b4] 2 C5 and [r1,x2,24,a2,a¢] 2 C5, a contradiction. Hence
{yl,yg} = {ag,a5}. Then [ag,a4,a5,bQ,b3] 2 05, [xo,xg,bl,b5,b4] 2 C5 and
[€1, X2, x4,a1,a2] 2 Cs, a contradiction.

Next, suppose that N(zg, L1) = {a;,a;t1,a;4+2} for some i € {1,2,3,4,5}.
Say w.l.o.g. N(zo,L1) = {a1,a2,a3}. Then e(az, Q) < 1 as G; 2 2C5 and so
e(Q,L1 — a2) > 12. First, assume e(x1,a4a5) > 1. Say w.l.o.g. zia5 € E.
Then [xg,x1,a5,a1,a2] 2 Cs. Then e(agaq,T) < 3 as G 2 2C5. If we also
have x1a4 € E, then similarly, e(ajas,T) < 3 and so e(Q,L1 — a2) < 11, a
contradiction. Hence x1a4 € E. As e(Q, L1) > 13, it follows that e(ajas, Q) = 8,
e(asaq, T) = 3, x1a3 € F and e(az,Q) = 1. Clearly, [T+ aq4 +as] 2 C5 as G1 2
2C5. This implies that e(as,T) = 0 and so e(a3, Q) = 4. Obviously, G; 2 2C5,
a contradiction. Hence e(z1,a4a5) = 0. Next, assume e(z1,a1a3) > 1. Then
[0, 21, a1, a2,a3] 2 C5 and so e(agas, T) < 3. It follows that e(Q, L1 — a2) < 12,
a contradiction. Hence e(z1, L1 — az) = 0. Thus e(7T, L1 — ag) = 12. Obviously,
G1 D 2C5, a contradiction.

Case 2. e(xp,L1) = 2 and e(Q, L1) > 16. First, suppose that N(zg, L1) =
{ai,ait2} for some i € {1,2,3,4,5}. Say, N(xo,L1) = {a1,a3}. Then e(az, Q) <
1 and e(Q, L1 — az) > 15. Thus e(x1,a1a3) > 1. Then [xg,x1,a1,a2,a3] 2 Cs
and so e(aqas,T) < 3. Thus e(Q, L1 — az) < 13, a contradiction. Therefore we
may assume w.l.o.g. that N(zo,L;) = {a1,a2}. First, assume z1a4 € E. Then
[xo,wl,a4,a5,a1] :_) 05 and [mo,xl,a4,a3,ag] :_) C5. As Gl 2 205, €(a2a3,T) S 3
and e(ajas,T) < 3. Thus e(Q,L;) < 14, a contradiction. Hence zia4 ¢ E.
Next, assume e(z1,azas) > 1. Say w.lo.g. xias € E. Then [z, 21, a5,a1,a2] 2
C5 and so e(azaq,T) < 3. As e(Q,L;) > 16, it follows that e(asaiaz, @) =
12, e(agayq,T) = 3 and w1a3 € E. Thus e(rs,az2a5) = 2 and so G; D 2C5, a
contradiction. Hence e(x1,azasas) = 0. Thus e(T, L) > 14. This implies that
e(xj, azas) = 2 and ayx; € E for some {i,j} C {2,3,4} with i # j. Consequently,
H D 2C5, a contradiction.

Case 3. e(xo,L1) =1 and e(Q, L) > 17. Say w.lo.g. zpa; € E. Suppose
e(r1,asaq) > 1. Say z1a3 € E. Then [z, ¢, a1,a2,a3] 2 Cs and so e(aqas, T) <
3as G1 2 2C5. As e(Q, Ly) > 17, it follows that e(ajazas, Q) = 12, e(aqas,T) =
3 and e(x1,a4a5) = 2. Then [zg,21,a4,a5,a1] 2 Cs and [T,ag,a3] 2 Cs, a
contradiction. Hence e(z1,asas) = 0. As e(Q,L1) > 17, e(T,L1) > 14. This
implies that e(x;, asas) = 2 and ajx; € E for some {i,j} C {2,3,4} with ¢ # j.
Consequently, H D 2C5, a contradiction. [

We are now in the position to complete the proof of Theorem 1. Let A, =
{Ltle(zo, Lt) = r,1 <t < k— 1} for each 0 < r < 5. Set p, = | A,| for each
0 <r <5. Clearly, po 4+ p1 +p2 +p3s+ps+p5 =k —1. By Lemma 3.3, we obtain
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e(zo,G) = e(xo, D +ZZ (o, Lt)

= OLtEAr
(2) = 1+p1+2p2+3p3+4p4+5p5;
e(D,G) = e(D, D) +Z > e(D, Ly)
r=0 L€ A,
(3) < 14 4 20pg + 17p1 + 17p2 4+ 15p3 4+ 13py + 10ps.

Then we obtain

e(zo,G) +e(D,G) < 15+ 20pg + 18p1 + 19p2 + 18ps + 17p4 + 15p5
(4) = 18k + 2po + p2 — p4 — 3p5 — 3.

As 322:0 pr = 3k — 3 and e(zg, G) > 3k, we obtain, by using (2), the following

14 p1 + 2p2 + 3p3 + 4ps + 5ps
(5) > 3+ 3po + 3p1 + 3p2 + 3ps + 3pa + 3ps.

This implies that 3pg+2p1 +p2 —pa —2p5 +2 < 0. Thus 2pg+p2 —ps — 3ps < —2.
Together with (4), we obtain e(xg, G) + e(D,G) < 18k — 5. But by the degree
condition on G, we have e(xo,G) + e(D,G) > 3k + 15k = 18k, a contradiction.
This proves Theorem 1.
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