ArticleOriginal scientific textEdge maximal
Title
Edge maximal -edge disjoint free graphs
Authors 1, 2
Affiliations
- Department of Mathematics, Yarmouk University, Irbid-Jordan
- Yarmouk University, Department of Mathematics, Irbid-Jordan, Department of Mathematics, Physics and Statistics, Qatar University, Doha-Qatar
Abstract
For two positive integers r and s, (n;r,s) denotes to the class of graphs on n vertices containing no r of s-edge disjoint cycles and f(n;r,s) = max{(G):G ∈ (n;r,s)}. In this paper, for integers r ≥ 2 and k ≥ 1, we determine f(n;r,2k+1) and characterize the edge maximal members in (n;r,2k+1).
Keywords
extremal graphs, edge disjoint, cycles
Bibliography
- M.S. Bataineh, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 2007).
- M.S. Bataineh and M.M.M. Jaradat, Edge maximal C₃ and C₅-edge disjoint free graphs, International J. Math. Combin. 1 (2011) 82-87.
- J. Bondy, Large cycle in graphs, Discrete Math. 1 (1971) 121-132, doi: 10.1016/0012-365X(71)90019-7.
- J. Bondy, Pancyclic graphs, J. Combin. Theory (B) 11 (1971) 80-84, doi: 10.1016/0095-8956(71)90016-5.
- J. Bondy and U. Murty, Graph Theory with Applications (The MacMillan Press, London, 1976).
- S. Brandt, A sufficient condition for all short cycles, Discrete Appl. Math. 79 (1997) 63-66, doi: 10.1016/S0166-218X(97)00032-2.
- L. Caccetta, A problem in extremal graph theory, Ars Combin. 2 (1976) 33-56.
- L. Caccetta and R. Jia, Edge maximal non-bipartite Hamiltonian graphs without cycles of length 5, Technical Report.14/97. School of Mathematics and Statistics, Curtin University of Technology (Australia, 1997).
- L. Caccetta and R. Jia, Edge maximal non-bipartite graphs without odd cycles of prescribed length, Graphs and Combin. 18 (2002) 75-92, doi: 10.1007/s003730200004.
- Z. Füredi, On the number of edges of quadrilateral-free graphs, J. Combin. Theory (B) 68 (1996) 1-6, doi: 10.1006/jctb.1996.0052.
- R. Jia, Some Extremal Problems in Graph Theory, Ph.D Thesis, Curtin University of Technology (Australia, 1998).
- P. Turán, On a problem in graph theory, Mat. Fiz. Lapok 48 (1941) 436-452.