Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2012 | 32 | 1 | 153-160

Tytuł artykułu

On a generalization of the friendship theorem

Autorzy

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
The Friendship Theorem states that if any two people, of a group of at least three people, have exactly one friend in common, then there is always a person who is everybody's friend. In this paper, we generalize the Friendship Theorem to the case that in a group of at least three people, if every two friends have one or two common friends and every pair of strangers have exactly one friend then there exist one person who is friend to everybody in the group. In particular, we show that the graph corresponding to this problem is of type G = K₁∨(sK₂ + tK₃), where s and t are non-negative integers and Kₘ is the complete graph on m vertices.

Słowa kluczowe

Wydawca

Rocznik

Tom

32

Numer

1

Strony

153-160

Opis fizyczny

Daty

wydano
2012
otrzymano
2010-05-21
poprawiono
2011-04-01
zaakceptowano
2011-04-01

Twórcy

  • Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801

Bibliografia

  • [1] J. Bondy, Kotzig's Conjecture on generalized friendship graphs - a survey, Annals of Discrete Mathematics 27 (1985) 351-366.
  • [2] P. Erdös, A. Rènyi and V. Sós, On a problem of graph theory, Studia Sci. Math 1 (1966) 215-235.
  • [3] R. Gera and J. Shen, Extensions of strongly regular graphs, Electronic J. Combin. 15 (2008) # N3 1-5.
  • [4] J. Hammersley, The friendship theorem and the love problem, in: Surveys in Combinatorics, London Math. Soc., Lecture Notes 82 (Cambridge University Press, Cambridge, 1989) 127-140.
  • [5] N. Limaye, D. Sarvate, P. Stanika and P. Young, Regular and strongly regular planar graphs, J. Combin. Math. Combin. Compt 54 (2005) 111-127.
  • [6] J. Longyear and T. Parsons, The friendship theorem, Indag. Math. 34 (1972) 257-262.
  • [7] E. van Dam and W. Haemers, Graphs with constant μ and μ̅, Discrete Math. 182 (1998) 293-307, doi: 10.1016/S0012-365X(97)00150-7.
  • [8] H. Wilf, The friendship theorem in combinatorial mathematics and its applications, Proc. Conf. Oxford, 1969 (Academic Press: London and New York, 1971) 307-309.

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.