ArticleOriginal scientific text

Title

p-Wiener intervals and p-Wiener free intervals

Authors 1, 2

Affiliations

  1. Center for Research and Post Graduate Studies in Mathematics, Ayya Nadar Janaki Ammal College, Sivakasi - 626 124,Tamil Nadu, India
  2. Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215,Tamil Nadu, India

Abstract

A positive integer n is said to be Wiener graphical, if there exists a graph G with Wiener index n. In this paper, we prove that any positive integer n(≠ 2,5) is Wiener graphical. For any positive integer p, an interval [a,b] is said to be a p-Wiener interval if for each positive integer n ∈ [a,b] there exists a graph G on p vertices such that W(G) = n. For any positive integer p, an interval [a,b] is said to be p-Wiener free interval (p-hyper-Wiener free interval) if there exist no graph G on p vertices with a ≤ W(G) ≤ b (a ≤ WW(G) ≤ b). In this paper, we determine some p-Wiener intervals and p-Wiener free intervals for some fixed positive integer p.

Keywords

Wiener index of a graph, Wiener graphical, p-Wiener interval, p-Wiener free interval, hyper-Wiener index of a graph, radius, diameter

Bibliography

  1. F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990).
  2. P.G. Doyle and J.L. Snell, Random Walks and Electric Networks (Math. Assoc., Washington, 1984).
  3. R.C. Entringer, D.E. Jackson and D.A. Snyder, Distance in graphs, Czechoslovak Math. J. 26 (101) 1976.
  4. D. Goldman, S. Istrail, G. Lancia and A. Picolboni, Algorithmic strategies in Combinatorial Chemistry, in: 11th ACM-SIAM Symposium, Discrete Algorithms (2000) 275-284.
  5. I. Gutman, Y.N. Yeh, S.L. Lee and J.C. Chen, Wiener number of dendrimers, Comm. Math. Chem., 30 (1994) 103-115.
  6. I. Gutman, Relation between hyper-Wiener and Wiener index, Chem. Phys. Lett. 364 (2002) 352-356, doi: 10.1016/S0009-2614(02)01343-X.
  7. KM. Kathiresan and S. Arockiaraj, Wiener indices of generalized complementary prisms, Bull. Inst. Combin. Appl. 59 (2010) 31-45.
  8. S. Klavžar, P. Zigert and I. Gutman, An algorithm for the calculation of the hyper-Wiener index of benzenoid hydrocarbons, Comput. Chem. 24 (2000) 229-233, doi: 10.1016/S0097-8485(99)00062-5.
  9. Liu Mu-huo and Xuezhong Tan, The first to (k+1)-th smallest Wiener (Hyper -Wiener) indices of connected graphs, Kragujevac J. Math. 32 (2009) 109-115.
  10. S. Nikolić, N. Trinajstić and Z. Mihalić, The Wiener index: Development and applications, Croat. Chem. Acta. 68 (1995) 105-129.
  11. H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.
Pages:
121-127
Main language of publication
English
Received
2010-07-08
Accepted
2011-02-15
Published
2012
Exact and natural sciences