Martin Bača et al. [2] introduced the problem of determining the total vertex irregularity strengths of graphs. In this paper we discuss how the addition of new edge affect the total vertex irregularity strength.
Department of Mathematics, Ayya Nadar Janaki Ammal College, Sivakasi - 626 124, India
Bibliografia
[1] D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5.
[2] M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378-1388,10.1016/j.disc.2005.11.075.
[3] G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
[4] J.H. Dinitz, D.K. Garnick and A. Gyárfás, On the irregularity strength of the m× n grid, J. Graph Theory 16 (1992) 355-374, doi: 10.1002/jgt.3190160409.
[5] A. Gyárfás, The irregularity strength of $K_{m,m}$ is 4 for odd m, Discrete Math. 71 (1988) 273-274, doi: 10.1016/0012-365X(88)90106-9.
[6] S. Jendrol' and M. Tkáč, The irregularity strength of tKₚ, Discrete Math. 145 (1995) 301-305, doi: 10.1016/0012-365X(94)E0043-H.
[7] KM. Kathiresan and K. Muthugurupackiam, Change in irregularity strength by an edge, J. Combin. Math. Combin. Comp. 64 (2008) 49-64.
[8] KM. Kathiresan and K. Muthugurupackiam, A study on stable, positive and negative edges with respect to irregularity strength of a graph, Ars Combin. (to appear).
[9] Nurdin, E.T. Baskoro, A.N.M. Salman and N.N. Gaos, On the total vertex irregularity strength of trees, Discrete Math. 310 (2010) 3043-3048, doi: 10.1016/j.disc.2010.06.041.
[10] K. Wijaya, Slamin, Surahmat and S. Jendrol', Total vertex irregular labeling of complete bipartite graphs, J. Combin. Math. Combin. Comp. 55 (2005) 129-136.
[11] K. Wijaya and Slamin, Total vertex irregular labelings of wheels, fans, suns and friendship graph, J. Combin. Math. Combin. Comp. 65 (2008) 103-112.