ArticleOriginal scientific text
Title
Wiener index of the tensor product of a path and a cycle
Authors 1, 1
Affiliations
- Department of Mathematics, Annamalai University, Annamalainagar 608 002, India
Abstract
The Wiener index, denoted by W(G), of a connected graph G is the sum of all pairwise distances of vertices of the graph, that is, . In this paper, we obtain the Wiener index of the tensor product of a path and a cycle.
Keywords
tensor product, Wiener index
Bibliography
- R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer-Verlag, New York, 2000).
- R. Balakrishanan, N. Sridharan and K. Viswanathan Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927, doi: 10.1016/j.aml.2007.10.003.
- Z. Du and B. Zhou, Minimum Wiener indices of trees and unicyclic graphs of given matching number, MATCH Commun. Math. Comput. Chem. 63 (2010) 101-112.
- Z. Du and B. Zhou, A note on Wiener indices of unicyclic graphs, Ars Combin. 93 (2009) 97-103.
- M. Fischermann, A. Hoffmann, D. Rautenbach and L. Volkmann, Wiener index versus maximum degree in trees, Discrete Appl. Math. 122 (2002) 127-137, doi: 10.1016/S0166-218X(01)00357-2.
- I. Gutman, S. Klavžar, Wiener number of vertex-weighted graphs and a chemical application, Discrete Appl. Math. 80 (1997) 73-81, doi: 10.1016/S0166-218X(97)00070-X.
- T.C. Hu, Optimum communication spanning trees, SIAM J. Comput. 3 (1974) 188-195, doi: 10.1137/0203015.
- W. Imrich and S. Klavžar, Product Graphs: Structure and Recognition (John Wiley, New York, 2000).
- F. Jelen and E. Triesch, Superdominance order and distance of trees with bounded maximum degree, Discrete Appl. Math. 125 (2003) 225-233, doi: 10.1016/S0166-218X(02)00195-6.
- K. Pattabiraman and P. Paulraja, Wiener index of the tensor product of cycles, submitted.
- P. Paulraja and N. Varadarajan, Independent sets and matchings in tensor product of graphs, Ars Combin. 72 (2004) 263-276.
- B.E. Sagan, Y.-N. Yeh and P. Zhang, The Wiener polynomial of a graph, manuscript.