PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2011 | 31 | 4 | 675-686
Tytuł artykułu

Oriented colouring of some graph products

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We obtain some improved upper and lower bounds on the oriented chromatic number for different classes of products of graphs.
Słowa kluczowe
Wydawca
Rocznik
Tom
31
Numer
4
Strony
675-686
Opis fizyczny
Daty
wydano
2011
otrzymano
2010-03-05
poprawiono
2010-10-11
zaakceptowano
2010-10-11
Twórcy
autor
  • The Institute of Mathematical Sciences, Taramani, Chennai, India
autor
  • C R RAO Advanced Institute for Mathematics, Statistics and Computer Science, University of Hyderabad Campus, Hyderabad, India
  • The Institute of Mathematical Sciences, Taramani, Chennai, India
Bibliografia
  • [1] N.R. Aravind and C.R. Subramanian, Forbidden subgraph colorings and the oriented chromatic number, in: 4th International Workshop on Combinatorial Algorithms 4393 (2009) 477-488.
  • [2] O.V. Borodin, A.V. Kostochka, J. Nesetril, A. Raspaud and É. Sopena, On the maximum average degree and the oriented chromatic number of a graph, Discrete Math. 206 (1999) 77-89, doi: 10.1016/S0012-365X(98)00393-8.
  • [3] O.V. Borodin, A.V. Kostochka, A. Raspaud and É. Sopena. Acyclic colouring of 1-planar graphs, Discrete Appl. Math. 114 (2001) 29-41, doi: 10.1016/S0166-218X(00)00359-0.
  • [4] B. Courcelle, The monadic second order logic of graphs. vi. on several representations of graphs by relational structures, Discrete Appl. Math. 54 (1994) 117-149, doi: 10.1016/0166-218X(94)90019-1.
  • [5] L. Esperet and P. Ochem, Oriented colorings of 2-outerplanar graphs, Information Processing Letters 101 (2007) 215-219, doi: 10.1016/j.ipl.2006.09.007.
  • [6] G. Fertin, A. Raspaud and A. Roychowdhury, On the oriented chromatic number of grids, Information Processing Letters 85 (2003) 261-266, doi: 10.1016/S0020-0190(02)00405-2.
  • [7] E. Fried, On homogeneous tournaments, Combinatorial Theory and its Applications 2 (1970) 467-476.
  • [8] P. Hell and J. Nesetril, Graphs and Homomorphisms, Oxford Lecture Series in Mathematics and its Applications (28), 2004.
  • [9] T. Herman, I. Pirwani and S. Pemmaraju, Oriented edge colorings and link scheduling in sensor networks, in: SENSORWARE 2006: 1st International Workshop on Software for Sensor Networks, 2006.
  • [10] W. Imrich and S. Klavžar, Product Graphs : Structure and Recognition (John Wiley & Sons, Inc., 2000).
  • [11] A.V. Kostochka, É. Sopena and X. Zhu, Acyclic and oriented chromatic numbers of graphs, J. Graph Theory 24 (1997) 331-340, doi: 10.1002/(SICI)1097-0118(199704)24:4<331::AID-JGT5>3.0.CO;2-P
  • [12] T.H. Marshall, Homomorphism bounds for oriented planar graphs, J. Graph Theory 55 (2007) 175-190, doi: 10.1002/jgt.20233.
  • [13] J. Nesetril, A. Raspaud and É. Sopena, Colorings and girth of oriented planar graphs, Discrete Math. 165-166 (1997) 519-530.
  • [14] P. Ochem, Oriented colorings of triangle-free planar graphs, Information Processing Letters 92 (2004) 71-76, doi: 10.1016/j.ipl.2004.06.012.
  • [15] A. Pinlou and É. Sopena, Oriented vertex and arc colorings of outerplanar graphs, Information Processing Letters 100 (2006) 97-104, doi: 10.1016/j.ipl.2006.06.012.
  • [16] A. Raspaud and É. Sopena, Good and semi-strong colorings of oriented planar graphs, Information Processing Letters 51 (1994) 171-174, doi: 10.1016/0020-0190(94)00088-3.
  • [17] É. Sopena, The chromatic number of oriented graphs, J. Graph Theory 25 (1997) 191-205, doi: 10.1002/(SICI)1097-0118(199707)25:3<191::AID-JGT3>3.0.CO;2-G
  • [18] É. Sopena, Oriented graph coloring, Discrete Math. 229 (2001) 359-369, doi: 10.1016/S0012-365X(00)00216-8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1572
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.