Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we prove that an element splitting operation by every pair of elements on a cographic matroid yields a cographic matroid if and only if it has no minor isomorphic to M(K₄).
Słowa kluczowe
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
601-606
Opis fizyczny
Daty
wydano
2011
otrzymano
2009-01-14
poprawiono
2010-06-16
zaakceptowano
2010-06-16
Twórcy
autor
- Department of Mathematics, Government College of Engineering, Pune 411 005 India
autor
- Department of Mathematics, University of Pune, Pune 411 007 India
autor
- Department of Mathematics, University of Pune, Pune 411 007 India
Bibliografia
- [1] S. Akkari and J. Oxley, Some local extremal connectivity results for matroids, Combinatorics, Probability and Computing 2 (1993) 367-384, doi: 10.1017/S0963548300000766.
- [2] Y.M. Borse, K. Dalvi and M.M. Shikare, Excluded-minor characterization for the class of cographic splitting matroids, Ars Combin., to appear.
- [3] K. Dalvi, Y.M. Borse and M.M. Shikare, Forbidden-minor characterization for the class of graphic element splitting matroids, Discuss. Math. Graph Theory 29 (2009) 629-644, doi: 10.7151/dmgt.1469.
- [4] F. Harary, Graph Theory (Addison-Wesley, Reading, 1969).
- [5] J.G. Oxley, Matroid Theory (Oxford University Press, Oxford, 1992).
- [6] T.T. Raghunathan, M.M. Shikare and B.N. Waphare, Splitting in a binary matroid, Discrete Math. 184 (1998) 267-271, doi: 10.1016/S0012-365X(97)00202-1.
- [7] M.M. Shikare and B.N. Waphare, Excluded-minors for the class of graphic splitting matroids, Ars Combin. 97 (2010) 111-127.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1568