ArticleOriginal scientific text

Title

Adjacent vertex distinguishing edge colorings of the direct product of a regular graph by a path or a cycle

Authors 1, 2, 2

Affiliations

  1. Dip. di Elettronica e Informazione, Politecnico di Milano, Piazza L. da Vinci, 32, 20133 Milano, Italy
  2. Dip. di Matematica, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy

Abstract

In this paper we investigate the minimum number of colors required for a proper edge coloring of a finite, undirected, regular graph G in which no two adjacent vertices are incident to edges colored with the same set of colors. In particular, we study this parameter in relation to the direct product of G by a path or a cycle.

Keywords

chromatic index, adjacent vertex distinguishing edge coloring, direct product, matching

Bibliography

  1. P.N. Balister, E. Györi, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.
  2. J.L. Baril, H. Kheddouci and O. Togni, Adjacent vertex distinguishing edge-colorings of meshes, Australasian J. Combin. 35 (2006) 89-102.
  3. P.K. Jha, Kronecker products of paths and cycles: decomposition, factorization and bi-pancyclicity, Discrete Math. 182 (1998) 153-167, doi: 10.1016/S0012-365X(97)00138-6.
  4. D.B. West, Introduction to Graph Theory, second ed. (Prentice Hall, Englewood Cliffs, NY, USA, 2001).
  5. Z. Zhang, L. Liu and J. Wang, Adjacent strong edge coloring of graphs, Appl. Math. Lett. 15 (2002) 623-626, doi: 10.1016/S0893-9659(02)80015-5.
Pages:
547-557
Main language of publication
English
Received
2008-12-11
Accepted
2010-03-02
Published
2011
Exact and natural sciences