ArticleOriginal scientific text
Title
Generalized circular colouring of graphs
Authors 1, 2, 1, 3
Affiliations
- Department of Applied Mathematics Faculty of Economics, Technical University Košice, B. Nĕmcovej 32, 040 01 Košice, Slovak Republic
- Mathematical Institute, Slovak Academy of Science, Grešákova 6, 040 01 Košice, Slovak Republic
- Institute of Mathematics Faculty of Science, P.J. Šafárik University, Jesenná 5, 041 54 Košice, Slovak Republic
Abstract
Let P be a graph property and r,s ∈ N, r ≥ s. A strong circular (P,r,s)-colouring of a graph G is an assignment f:V(G) → {0,1,...,r-1}, such that the edges uv ∈ E(G) satisfying |f(u)-f(v)| < s or |f(u)-f(v)| > r - s, induce a subgraph of G with the propery P. In this paper we present some basic results on strong circular (P,r,s)-colourings. We introduce the strong circular P-chromatic number of a graph and we determine the strong circular P-chromatic number of complete graphs for additive and hereditary graph properties.
Keywords
graph property, P-colouring, circular colouring, strong circular P-chromatic number
Bibliography
- J.A. Bondy and P. Hell, A Note on the Star Chromatic Number, J. Graph Theory 14 (1990) 479-482, doi: 10.1002/jgt.3190140412.
- O. Borodin, On acyclic colouring of planar graphs, Discrete Math. 25 (1979) 211-236, doi: 10.1016/0012-365X(79)90077-3.
- M. Borowiecki and P. Mihók, Hereditary properties of graphs, in: V.R. Kulli, editor, Advances in Graph Theory (Vishwa International Publishers, 1991) 42-69.
- M. Borowiecki, I. Broere, M. Frick, P. Mihók and G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997) 5-50, doi: 10.7151/dmgt.1037.
- W. Klostermeyer, Defective circular coloring, Austr. J. Combinatorics 26 (2002) 21-32.
- P. Mihók, On the lattice of additive hereditary properties of object systems, Tatra Mt. Math. Publ. 30 (2005) 155-161.
- P. Mihók, Zs. Tuza and M. Voigt, Fractional P-colourings and P-choice ratio, Tatra Mt. Math. Publ. 18 (1999) 69-77.
- A. Vince, Star chromatic number, J. Graph Theory 12 (1988) 551-559.