EN
An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where $\binom{n-1}{2} + 1 ≤ m ≤ \binom{n}{2} - 1$. We also characterize graphs with rainbow connection number two and large clique number.