MONOCHROMATIC CYCLES AND MONOCHROMATIC PATHS IN ARC-COLORED DIGRAPHS

Hortensia Galeana-Sánchez
Guadalupe Gaytán-Gómez

Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México, D.F. 04510, México

E-mail: hgaleana@matem.unam.mx
 gaytan@matem.unam.mx

AND

Rocío Rojas-Monroy

Facultad de Ciencias
Universidad Autónoma del Estado de México
Instituto Literario No. 100, Centro 50000, Toluca, Edo. de México, México

E-mail: mrrm@uaemex.mx

Abstract

We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. A path (or a cycle) is called monochromatic if all of its arcs are colored alike. A cycle is called a quasi-monochromatic cycle if with at most one exception all of its arcs are colored alike. A subdigraph H in D is called rainbow if all its arcs have different colors. A set $N \subseteq V(D)$ is said to be a kernel by monochromatic paths if it satisfies the following two conditions: (i) for every pair of different vertices $u, v \in N$ there is no monochromatic path between them and; (ii) for every vertex $x \in V(D) - N$ there is a vertex $y \in N$ such that there is an xy-monochromatic path. The closure of D, denoted by $\mathcal{C}(D)$, is the m-colored multidigraph defined as follows: $V(\mathcal{C}(D)) = V(D)$, $A(\mathcal{C}(D)) = A(D) \cup \{(u, v) \mid \text{there exists a } uv\text{-monochromatic path colored } i \text{ contained in } D\}$. Notice that for
any digraph D, $\mathcal{C}(\mathcal{C}(D)) \simeq \mathcal{C}(D)$ and D has a kernel by monochromatic paths if and only if $\mathcal{C}(D)$ has a kernel.

Let D be a finite m-colored digraph. Suppose that there is a partition $C = C_1 \cup C_2$ of the set of colors of D such that every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colors in C_i is monochromatic. We show that if $\mathcal{C}(D)$ does not contain neither rainbow triangles nor rainbow P_3 involving colors of both C_1 and C_2, then D has a kernel by monochromatic paths.

This result is a wide extension of the original result by Sands, Sauer and Woodrow that asserts: Every 2-colored digraph has a kernel by monochromatic paths (since in this case there are no rainbow triangles in $\mathcal{C}(D)$).

Keywords: kernel, kernel by monochromatic paths, monochromatic cycles.

2010 Mathematics Subject Classification: 05C20.

1. Introduction

For general concepts we may refer the reader to [1]. Let D be a digraph, and let $V(D)$ and $A(D)$ denote the sets of vertices and arcs of D, respectively. We recall that a subdigraph D_1 of D is a spanning subdigraph if $V(D_1) = V(D)$. If S is a nonempty subset of $V(D)$ then the subdigraph $D[S]$ induced by S is the digraph having vertex set S, and whose arcs are all those arcs of D joining vertices of S. An arc u_1u_2 of D will be called an S_1S_2-arc of D whenever $u_1 \in S_1$ and $u_2 \in S_2$.

A set $I \subseteq V(D)$ is independent if $A(D[I]) = \emptyset$. A kernel N of D is an independent set of vertices such that for each $z \in V(D) - N$ there exists a zN-arc in D, that is an arc from z towards some vertex in N. A digraph D is called a kernel-perfect digraph when every induced subdigraph of D has a kernel. Sufficient conditions for the existence of kernels in digraphs have been investigated by several authors, Duchet and Meyniel [4]; Duchet [2, 3]; Galeana-Sánchez and Neumann-Lara [5, 6]. The concept of kernel is very useful in applications.

We call the digraph D an m-colored digraph if the arcs of D are colored with m colors. Along this paper, all the paths and cycles will be directed paths and directed cycles. A path is called monochromatic if all of its arcs are colored alike. A subdigraph H of D is called rainbow if all its arcs have distinct colors. A set $N \subseteq V(D)$ is called a kernel by monochromatic paths
if for every pair of different vertices \(u, v \in N \) there is no monochromatic path between them and for every vertex \(v \in V(D) - N \) there is a monochromatic path from \(v \) to some vertex in \(N \).

In [12] Sands, Sauer and Woodrow have proved that any 2-colored digraph \(D \) has an independent set \(S \) of vertices of \(D \) such that, for every vertex \(x \notin S \), there is a monochromatic path from \(x \) to a vertex of \(S \) (i.e., \(D \) has a kernel by monochromatic paths, concept that was introduced later by Galeana-Sánchez [7].) In particular, they proved that any 2-colored tournament \(T \) has a kernel by monochromatic paths. They also raised the following problem: Let \(T \) be a 3-colored tournament such that every cycle of length 3 is a quasi-monochromatic cycle; must \(T \) have a kernel by monochromatic paths? (This question still remains open.) In [11] Shen Minggang proved that if \(T \) is an \(m \)-colored tournament such that every cycle of length 3 is a quasi-monochromatic cycle, and every transitive tournament of order 3 is quasi-monochromatic, then \(T \) has a kernel by monochromatic paths. He also proved that this result is the best possible for \(m \)-colored tournaments with \(m \geq 5 \). In fact, he proved that for each \(m \geq 5 \) there exists an \(m \)-colored tournament \(T \) such that every cycle of length 3 is quasi-monochromatic and \(T \) has no kernel by monochromatic paths. Also for every \(m \geq 3 \) there exists an \(m \)-colored tournament \(T' \) such that every transitive tournament of order 3 is quasi-monochromatic and \(T' \) has no kernel by monochromatic paths. In 2004 [10] H. Galeana-Sánchez and R. Rojas-Monroy presented a 4-colored tournament \(T \) such that every cycle of order 3 is quasi-monochromatic; but \(T \) has no kernel by monochromatic paths. The known sufficient conditions for the existence of kernel by monochromatic paths in \(m \)-colored (\(m \geq 3 \)) tournaments (or nearly tournaments), ask for the monochromaticity or quasi-monochromaticity of certain subdigraphs. More information on \(m \)-colored digraphs can be found in [7, 8, 9, 13, 14].

If \(C = (z_0, z_1, \ldots, z_n, z_0) \) is a cycle, we will denote by \(\ell(C) \) its length and if \(z_i, z_j \in V(C) \) with \(i \leq j \) we denote by \((z_i, C, z_j) \) the \(z_iz_j \)-path contained in \(C \), and \(\ell(z_i, C, z_j) \) will denote its length.

The following is our main result:

Theorem 1. Let \(D \) be a finite \(m \)-colored digraph. Suppose that there is a partition \(C = C_1 \cup C_2 \) of the set of colors of \(D \) such that every cycle in the subdigraph \(D[C_i] \) spanned by the arcs with colors in \(C_i \) is monochromatic. Suppose, moreover, that \(C(D) \) does not contain neither rainbow triangles nor rainbow \(P_3 \) involving colors of both \(C_1 \) and \(C_2 \). Then \(D \) has a kernel by monochromatic paths.
Notice that the Theorem 1 implies the Theorem of Sands, Sauer and Woodrow in the finite case by taking as a partition each of the two colors: all cycles in each color class are trivially monochromatic and $\mathcal{C}(D)$ has no rainbow subdigraphs.

We will need the following basic elementary results.

Lemma 2. Let D be a digraph; $u, v \in V(D)$. Every uv-monochromatic walk in D contains a uv-monochromatic path.

Lemma 3. Let D be a digraph. Every closed walk in D contains a cycle.

Lemma 4. Let D be a digraph. If for every $v \in V(D)$ fulfills that $\delta^{-}(v) \geq 1$ ($\delta^{+}(v) \geq 1$) then D contains a cycle.

And the following Theorem.

Theorem 5 (Berge-Duchet [2]). If D is a digraph such that every cycle of D has at least one symmetrical arc, then D is a kernel-perfect digraph.

2. Monochromatic Cycles and Monochromatic Paths in Arc-colored Digraphs

The following lemmas are about m-colored digraphs such that each cycle is monochromatic, and they are useful to prove our main result.

Lemma 6. Let D be a finite or infinite m-colored digraph such that every cycle in D is monochromatic. If $C = (u_0, u_1, \ldots, u_{n-1})$ is a sequence of $n \geq 2$ vertices, different by pairs, such that for every $i \in \{0, \ldots, n-1\}$ T_i is some u_iu_{i+1}-monochromatic path then the set of paths $\{T_i \mid i \in \{0, \ldots, n-1\}\}$ is monochromatic, that is, the paths T_i are of the same color by pairs (the indices of the vertices will be taken modulo n.)

Proof. Assume, by contradiction, that there exists a sequence of vertices $(u_0, u_1, \ldots, u_{n-1})$ such that for every $i \in \{0, \ldots, n-1\}$ there exists a $T_i = u_iu_{i+1}$-monochromatic path in D and the set of paths $\{T_i \mid i \in \{0, \ldots, n-1\}\}$ is not monochromatic. Choose such a counterexample with a minimal number of arcs. Then from Lemma 3 the subdigraph induced by this walk contains a cycle which involves more than one path. Since all cycles in D are monochromatic, we can not consider the arcs of the cycle and obtain a counterexample with a smaller number of arcs, a contradiction.
As a direct result from Lemma 6 we have:

Remark 7. If D is an m-colored digraph such that every cycle is monochromatic then in $\mathcal{C}(D)$ every cycle is monochromatic.

Remark 8. If D is an m-colored digraph such that every cycle is monochromatic then in $\mathcal{C}(D)$ every cycle is symmetrical.

Proof. It follows from Remark 7 and the fact that $\mathcal{C}(\mathcal{C}(D)) \cong \mathcal{C}(D)$.

Lemma 9. Let D be a finite m-colored digraph such that every cycle in D is monochromatic. Then there exists $x_0 \in V(D)$ such that for every $z \in V(D) - \{x_0\}$ if there exists a x_0z-monochromatic path contained in D then there exists a zx_0-monochromatic path contained in D.

Proof. Assume, for a contradiction, that D is a digraph as in the hypothesis and that there is no vertex x_0 satisfying the affirmation from Lemma 9. It follows that $\text{Asym}\mathcal{C}(D)$ has a cycle. On the other hand, from Remark 8 we have that every cycle in $\mathcal{C}(D)$ is symmetric, a contradiction.

Let D be an m-colored digraph and let H be a subdigraph of D. We will say that $S \subseteq V(D)$ is a semikernel by monochromatic paths modulo H of D if S is independent by monochromatic paths in D and for every $z \in V(D) - S$, if there is a Sz-monochromatic path contained in $D - H$ then there is a zS-monochromatic path contained in D.

Lemma 10. Let D be a finite m-colored digraph. Let H be a subdigraph of D such that every directed cycle in $D - H$ is monochromatic. Then there exists $x_0 \in V(D)$ which satisfies that $\{x_0\}$ is a semikernel by monochromatic paths modulo H of D.

Proof. It follows by applying Lemma 9 to $D - H$.

Let

$$S = \{\emptyset \neq S \mid S \text{ is a semikernel by monochromatic paths mod } D_2 \text{ of } D\}.$$

Whenever $S \neq \emptyset$, we will denote by D_S the digraph defined as follows: $V(D_S) = S$ (i.e., for every element of S we put a vertex in D_S) and $(S_1, S_2) \in A(D_S)$ if and only if for every $s_1 \in S_1$ there exists $s_2 \in S_2$ such that $s_1 = s_2$, or there exists a s_1s_2-monochromatic path contained in D_2 and there is no s_2s_1-monochromatic path contained in D.
Lemma 11. Let D be a finite m-colored digraph. Suppose that there is a partition $C = C_1 \cup C_2$ of the set of colors of D such that every cycle in the subdigraph $D[C_i]$ spanned by the arcs with colors in C_i is monochromatic. Then D_S is an acyclic digraph.

Proof. Observe that by Lemma 10, there exists a semikernel by monochromatic paths mod D_2 of D. Thus $S = \emptyset$ and we can consider the digraph D_S. Suppose for a contradiction, that D_S contains some cycle, say $C = (S_0, S_1, \ldots, S_{n-1}, S_0)$ of length $n \geq 2$. Since C is a cycle in D_S, we have that $S_i \neq S_j$ whenever $i \neq j$.

Claim 1. There exists $i_0 \in \{0, 1, 2, \ldots, n - 1\}$ such that for some $z \in S_{i_0}$, $z \notin S_{i_0+1} \ (\text{mod} \ n)$.
Otherwise, for every $i \in \{0, 1, \ldots, n - 1\}$ and every $z \in S_i$ we have that $z \in S_{i+1}$ and then $S_i = S_j$ for all $i, j \in \{0, 1, \ldots, n - 1\}$. So, $C = (S_0)$, which is a contradiction since a cycle contains at least two vertices.

Claim 2. If there exists $i_0 \in \{0, 1, \ldots, n - 1\}$ such that for some $z \in S_{i_0}$ and some $w \in S_{i_0+1} \ (\text{mod} \ n)$ there exists a zw-monochromatic path; then there exists $j_0 \neq i_0, j_0 \in \{0, 1, \ldots, n - 1\}$ such that $w \in S_{j_0}$ and $w \notin S_{j_0+1} \ (\text{mod} \ n)$.
Suppose without loss of generality that $i_0 = 0$. First, observe that $w \notin S_n = S_0$ since otherwise we have a zw-monochromatic path with $\{z, w\} \subseteq S_0$, contradicting that S_0 is independent by monochromatic paths. Since $w \in S_1$, let $j_0 = \max \{i \in \{0, 1, \ldots, n - 1\} \mid w \in S_i\}$ (notice that for both previous observations j_0 is well defined.) So, $w \in S_{j_0}$ and $w \notin S_{j_0+1}$.

It follows from Claim 1 that there exists $i_0 \in \{0, \ldots, n - 1\}$ and $t_0 \in S_{i_0}$ such that $t_0 \notin S_{i_0+1}$. It follows from the fact that $(S_{i_0}, S_{i_0+1}) \in F(D_S)$ that there exists $t_1 \in S_{i_0+1}$ such that there exists a t_0t_1-monochromatic path contained in D_2 and there is no $t_1S_{i_0}$-monochromatic path contained in D. From Claim 2, it follows that there exists an index $i_1 \in \{0, \ldots, n - 1\}$ such that $t_1 \in S_{i_1}$ and $t_1 \notin S_{i_1+1}$. Since $(S_{i_1}, S_{i_1+1}) \in F(D_S)$ it follows that there exists $t_2 \in S_{i_1+1}$ such that there is a t_1t_2-monochromatic path contained in D_2 and there is no $t_2S_{i_1}$-monochromatic path contained in D. Since D is finite, we obtain a sequence of vertices $(t_0, t_1, t_2, \ldots, t_{m-1})$ such that there exists a $t_i t_{i+1}$-monochromatic path contained in D_2 and there is no $t_{i+1}t_i$-monochromatic path contained in D for every $i \in \{0, 1, 2, \ldots, m - 1\} \ (\text{mod} \ m)$. But this contradicts Lemma 6. Therefore D_S is an acyclic digraph. ■
3. The Main Result

The following theorem is a particular case from our Main Result.

Theorem 12. Let D be an m-colored digraph such that every cycle in D is monochromatic, then D has a kernel by monochromatic paths.

Proof. It follows from Remark 8 and Theorem 5 that $\mathcal{C}(D)$ has a kernel and so D has a kernel by monochromatic paths.

The main idea of the proof of our main theorem is to select $S \in V(D_S)$ such that $\delta^+_D(S) = 0$ (such S exists since D_S is acyclic) and prove that S is a kernel by monochromatic paths of D.

We next proceed to prove our main result, Theorem 1.

Proof of Theorem 1. Consider the digraph D_S of the digraph D. Since D_S is a finite digraph and from Lemma 11 it does not contain cycles, it follows that D_S contains at least a vertex of zero outdegree. Let $S \in V(D_S)$ be such that $\delta^+_D(S) = 0$.

We will prove that S is a kernel by monochromatic paths of D.

Suppose for a contradiction, that S is not a kernel by monochromatic paths of D. Since $S \in V(D_S)$, we have that S is independent by monochromatic paths.

Let

$$X = \{z \in V(D) \mid \text{there is no } zS\text{-monochromatic path in } D\}.$$

It follows from our assumption that $X \neq \emptyset$. Since $D[X]$ is an induced subdigraph of D, we have that $D[X]$ satisfies the hypotheses from Lemma 11. So, it follows that there exists $x_0 \in X$ such that $\{x_0\}$ is a semikernel by monochromatic paths mod D_2 of D.

Let

$$T = \{z \in S \mid \text{there is no } zx_0\text{-monochromatic path in } D_2\}.$$

From the definition of T, we have that for every $z \in (S - T)$ there exists a zx_0-monochromatic path contained in D_2.

Claim 13. $T \cup \{x_0\}$ is independent by monochromatic paths.

It follows directly from the facts that $T \subseteq S$, $S \in S$ and $x_0 \in X$.

Claim 14. For each \(z \in V(D) - T \cup \{x_0\} \), if there exists a \((T \cup \{x_0\})z\)-monochromatic path contained in \(D_1 \), then there exists a \(z(T \cup \{x_0\})\)-monochromatic path contained in \(D \).

Case 1. There exists a \(Tz\)-monochromatic path contained in \(D_1 \). Since \(T \subseteq S \) and \(S \subseteq S \), it follows that there exists a \(zS\)-monochromatic path contained in \(D \). We may suppose that there exists a \(z(S-T)\)-monochromatic path contained in \(D \). Let \(\alpha_1 \) be a \(uw\)-monochromatic path contained in \(D_1 \) with \(u \in T \), and let \(\alpha_2 \) be a \(zw\)-monochromatic path with \(w \in (S-T) \) contained in \(D \). Since \(w \in (S-T) \) it follows from the definition of \(T \) that there exists \(\alpha_3 \) a \(wx_0\)-monochromatic path contained in \(D_2 \).

Moreover, \(\text{color}(\alpha_1) \neq \text{color}(\alpha_2) \) (\(\text{color}(\alpha) \) denotes the color used in the arcs of \(\alpha \)) otherwise there exists a \(uw\)-monochromatic path contained in \(\alpha_1 \cup \alpha_2 \), with \(\{u,w\} \subseteq S \), in contradiction with the fact that \(S \) is independent by monochromatic paths. In addition, we will suppose that color \(\alpha_2 \neq \text{color}(\alpha_3) \) since if \(\text{color}(\alpha_2) = \text{color}(\alpha_3) \) then \(\alpha_2 \cup \alpha_3 \) contains a \(zw_0\)-monochromatic path and Claim 2 is proved. Also \(\text{color}(\alpha_1) \neq \text{color}(\alpha_3) \) as \(\text{color}(\alpha_1) \in C_1 \) and \(\text{color}(\alpha_3) \in C_2 \).

So, we obtain that \((u,z,w,x_0)\) is a rainbow \(P_3 \) in \(\mathcal{C}(D) \) involving colors of both \(C_1 \) and \(C_2 \), a contradiction.

Case 2. There exists a \(x_0z\)-monochromatic path contained in \(D_1 \).

Let \(\alpha_1 \) be such a path, we may suppose that \(z \not\in X \). It follows from the definition of \(X \) that there exists some \(zS\)-monochromatic path contained in \(D \), let \(\alpha_2 \) be such path, say that \(\alpha_2 \) ends in \(w \). We will suppose that \(w \in (S-T) \). Since \(w \in (S-T) \), by the definition of \(T \), we have that there exists a \(wx_0\)-monochromatic path contained in \(D_2 \), let \(\alpha_3 \) be such a path.

Again, we have that \(\text{color}(\alpha_1) \neq \text{color}(\alpha_2) \) otherwise there exists a \(x_0w\)-monochromatic path contained in \(\alpha_1 \cup \alpha_2 \), contradicting that \(x_0 \in X \) and \(w \in S \). In addition, we will suppose that \(\text{color}(\alpha_2) \neq \text{color}(\alpha_3) \) since if \(\text{color}(\alpha_2) = \text{color}(\alpha_3) \) then \(\alpha_2 \cup \alpha_3 \) contains a \(zw_0\)-monochromatic path and Claim 2 is proved. Also \(\text{color}(\alpha_1) \neq \text{color}(\alpha_3) \) since \(\alpha_1 \subseteq D_1 \) and \(\alpha_3 \subseteq D_2 \).

Then \((x_0,z,w,x_0)\) is a rainbow \(C_3 \) in \(\mathcal{C}(D) \) which involves colors of both \(C_1 \) and \(C_2 \), a contradiction.

We conclude from Claims 1 and 2 that \(T \cup \{x_0\} \in \mathcal{S} \) and therefore \(T \cup \{x_0\} \in V(D_S) \). We have that \((S,T \cup \{x_0\}) \in F(D_S) \) since \(T \subseteq T \cup \{x_0\} \), and for each \(s \in S - T \) there exists a \(sx_0\)-monochromatic path contained in \(D_2 \) and there is no \(x_0S\)-monochromatic path contained in \(D \). But this contradicts
the fact that $\delta^+_{DS}(S) = 0$. Therefore S is a kernel by monochromatic paths in D and the Theorem is proved. ■

Remark 15. Notice that while in Theorem 12 it is asked for every cycle to be monochromatic, in the Theorem 1 there could exist non monochromatic cycles since the monochromatic cycles only are asked for each D_i, $i \in \{1, 2\}$.

Acknowledgement

The authors thank the anonymous referee for many suggestions which improve substantially the rewriting of this paper.

References

Received 26 November 2009
Revised 18 December 2010
Accepted 19 December 2010