ArticleOriginal scientific text
Title
The independent domination number of a random graph
Authors 1, 1
Affiliations
- Department of Mathematics, Southern Illinois University Carbondale, Carbondale, IL 62901-4408, USA
Abstract
We prove a two-point concentration for the independent domination number of the random graph provided p²ln(n) ≥ 64ln((lnn)/p).
Keywords
random graph, two-point concentration, independent domination
Bibliography
- N. Alon and J. Spencer, The Probabilistic Method (John Wiley, New York, 1992).
- B. Bollobás, Random Graphs (Second Edition, Cambridge University Press, New York, 2001).
- A. Bonato and C. Wang, A note on domination parameters in random graphs, Discuss. Math. Graph Theory 28 (2008) 307-322, doi: 10.7151/dmgt.1409.
- A. Godbole and B. Wieland, On the domination number of a Random graph, Electronic J. Combin. 8 (2001) 1-13.
- T. Haynes, S. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., New York, 1998).
- T. Haynes, S. Hedetniemi and P. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., New York, 1998).
- K. Weber, Domination number for almost every graph, Rostocker Matematisches Kolloquium 16 (1981) 31-43.