PAIRED DOMINATION IN PRISMS OF GRAPHS

Christina M. Mynhardt*

AND

Mark Schurch

Department of Mathematics and Statistics
University of Victoria
P.O. Box 3060 STN CSC
Victoria, BC, Canada V8W 3R4

e-mail: mynhardt@math.uvic.ca, mschurch@math.uvic.ca

Abstract

The paired domination number $\gamma_{\rm pr}(G)$ of a graph G is the smallest cardinality of a dominating set S of G such that $\langle S \rangle$ has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. We provide characterizations of the following three classes of graphs: $\gamma_{\rm pr}(\pi G) = 2\gamma_{\rm pr}(G)$ for all πG ; $\gamma_{\rm pr}(K_2 \square G) = 2\gamma_{\rm pr}(G)$; $\gamma_{\rm pr}(K_2 \square G) = \gamma_{\rm pr}(G)$.

Keywords: domination, paired domination, prism of a graph, Cartesian product.

2010 Mathematics Subject Classification: 05C69.

1. Introduction

The paired domination number of a graph G is the smallest cardinality of a dominating set S of G such that $\langle S \rangle$ has a perfect matching, and is denoted by $\gamma_{\rm pr}(G)$. The paired domination number of the Cartesian product $G \square H$ of two isolate-free graphs G and H was first investigated by Brešar, Henning and Rall [1], who obtained upper bounds on $\gamma_{\rm pr}(G)\gamma_{\rm pr}(H)$ in terms

^{*}Supported by the Natural Sciences and Engineering Research Council of Canada.

of $\gamma_{\rm pr}(G \square H)$. They showed, i.e., that for any nontrivial tree T and any isolate-free graph H, $\gamma_{\rm pr}(T)\gamma_{\rm pr}(H) \leq 2\gamma_{\rm pr}(T \square H)$.

We compare the paired domination number of a graph G with the paired domination numbers of its generalized prisms πG ; i.e., the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. Obviously, $\gamma_{\rm pr}(\pi G) \leq 2\gamma_{\rm pr}(G)$. Graphs G for which $\gamma_{\rm pr}(\pi G) = 2\gamma_{\rm pr}(G)$ regardless of how the two copies of G are joined are called universal $\gamma_{\rm pr}$ -doublers.

After providing background information in Section 2, we give necessary and sufficient conditions for a graph to be a universal $\gamma_{\rm pr}$ -doubler in Section 3. We also give necessary and sufficient conditions for a graph to be a *prism* $\gamma_{\rm pr}$ -doubler, i.e., $\gamma_{\rm pr}(K_2 \square G) = 2\gamma_{\rm pr}(G)$ (Section 4), and a *prism* $\gamma_{\rm pr}$ -fixer, i.e., $\gamma_{\rm pr}(K_2 \square G) = \gamma_{\rm pr}(G)$ (Section 5). Open problems related to this topic are mentioned in Section 6.

2. Definitions and Background

For any permutation π of V(G), the prism of G with respect to π is the graph πG obtained from two copies G_1 and G_2 of G by joining $u \in V(G_1)$ and $v \in V(G_2)$ if and only if $v = \pi(u)$. If π is the identity $\mathbf{1}_G$, then $\pi G = K_2 \square G$, the Cartesian product of G and K_2 . The graph $K_2 \square G$ is called the prism of (or over) G and, in general, πG is a generalized prism of G.

We shall abbreviate V(G), E(G) and $V(G_i)$ to V, E and V_i , respectively. Let $u \in V$ and $S \subseteq V$. In πG we denote the counterparts of u (or S) in G_1 and G_2 by u_1 and u_2 (or S_1 and S_2) respectively. Conversely, the vertex u_1 and set S_1 in G_1 (or u_2 and S_2 in G_2) are denoted by u and S respectively when considered in G.

For $v \in V$, the open neighbourhood N(v) of v is defined by $N(v) = \{u \in V : uv \in E\}$, and the closed neighbourhood N[v] of v is the set $N(v) \cup \{v\}$. For $S \subseteq V$, $N(S) = \bigcup_{s \in S} N(s)$, $N[S] = \bigcup_{s \in S} N[s]$ and $N\{S\} = N[S] - S$. For $v \in S$ we call $w \in V - S$ an S-external private neighbour of v if $N(w) \cap S = \{v\}$. Denote the set of all S-external private neighbours of v by $\operatorname{epn}(v, S)$.

A set $S \subseteq V$ dominates G or is a dominating set of G if every vertex in V-S is adjacent to a vertex in S. The domination number $\gamma(G)$ of G is defined by $\gamma(G) = \min\{|S| : S \text{ dominates } G\}$. A dominating set S is a paired dominating set S if S has a perfect matching. A vertex S is an S-vertex of a matching S if S does not belong to any edge of S. If S

is a PDS and M is a perfect matching of $\langle S \rangle$, we call M an S-matching. A γ -set of G is a dominating set of G of cardinality $\gamma(G)$; a $\gamma_{\rm pr}$ -set is defined similarly. We follow [9] for domination terminology.

It is easy to see that $\gamma(G) \leq \gamma(\pi G) \leq 2\gamma(G)$ for all permutations π of V. If $\gamma(K_2 \square G) = \gamma(G)$, then G is called a *prism fixer*, and if $\gamma(K_2 \square G) = 2\gamma(G)$, then G is a *prism doubler*. If $\gamma(\pi G) = \gamma(G)$ for all permutations π of V, then G is a *universal fixer*, and if $\gamma(\pi G) = 2\gamma(G)$ for all π , then G is a *universal doubler*.

Prism fixers we first studied by Hartnell and Rall [7, 8] in connection with Vizing's conjecture on the domination number of the Cartesian product of graphs. Prism and universal doublers were studied in [3], while fixers and doublers for other domination parameters, such as total and paired domination, were investigated in [11]. The graphs $\overline{K_n}$, $n \geq 1$, are universal fixers because $\pi \overline{K_n} = nK_2$ for all permutations π of V. Moreover, these graphs are the only universal fixers known to date. The following conjecture was formulated in [10] and also studied in [2, 4, 6].

Conjecture 1. The graphs $\overline{K_n}$, $n \ge 1$, are the only universal fixers.

It is obvious that $\gamma_{\rm pr}(\pi G) \leq 2\gamma_{\rm pr}(G)$ for any graph G and any permutation π of V. Unlike the case for the domination number, though, the paired domination number of πG is not bounded below by the paired domination number of G. For the graph G in Figure 1, $\gamma_{\rm pr}(G)=6$, but for any πG obtained by adding enough edges to the graph shown, $\gamma_{\rm pr}(\pi G)=4$. However, if π is the identity, then the above-mentioned lower bound follows from the work in [1]. We give a direct proof below.

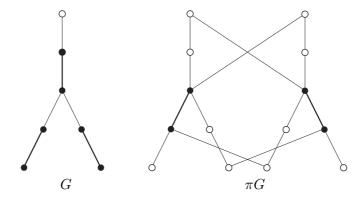


Figure 1. $\gamma_{\rm pr}(\pi G) < \gamma_{\rm pr}(G)$

Proposition 1. For any isolate-free graph G, $\gamma_{\rm pr}(G) \leq \gamma_{\rm pr}(K_2 \square G) \leq 2\gamma(G)$.

Proof. For the upper bound, note that if D is a γ -set of G, then $D_1 \cup D_2$ is a PDS of $K_2 \square G$. For the lower bound, let W be a γ_{pr} -set of $K_2 \square G$ with $X_1 = W \cap V_1$ and $D_2 = W \cap V_2$ and let $S = X \cup D$. Then S dominates G and $|S| = |X| + |D| - |X \cap D|$.

If $X \cap D = \emptyset$, then $\langle S \rangle$ contains a perfect matching (the matching corresponding to the perfect matching of $\langle W \rangle$) and S is a PDS of G with |S| = |W|, so we are done.

Assume $X \cap D \neq \emptyset$. Let M be a maximum matching of $\langle S \rangle$ and $Z = \{z^1, \ldots, z^k\}$ the set of \overline{M} -vertices; note that $k \leq |X \cap D|$. Let $S^0 = S$ and for $i = 1, \ldots, k$, construct S^i recursively as follows.

• If z^i is adjacent to $s^i \in V - S^{i-1}$, let $S^i = S^{i-1} \cup \{s^i\}$. Otherwise, z^i is adjacent to $x \in S^{i-1}$ because G is isolate-free; hence $N[z^i] \subseteq S^{i-1}$. Let $S^i = S^{i-1} - \{z^i\}$.

Then S^k dominates G, $\langle S^k \rangle$ has a perfect matching and thus S^k is a PDS of G. Moreover, $|S^k| \leq |S| + |Z| \leq |X| + |D| = |W|$ and the result follows.

Corollary 2. If a graph G is a prism γ_{pr} -doubler, then $\gamma_{pr}(G) = \gamma(G)$.

3. Universal Doublers

Suppose D' is a $\gamma_{\rm pr}$ -set of a graph G in which u is paired with v, and ${\rm epn}(v,D')=\emptyset$. Then $D=D'-\{v\}$ dominates G, and $D_1\cup D_2$ is a $\gamma_{\rm pr}$ -set of $K_2\square G$ in which u_1 is paired with u_2 . Thus G is not a prism $\gamma_{\rm pr}$ -doubler and thus not a universal $\gamma_{\rm pr}$ -doubler. A similar argument (but with another permutation) shows that if G has a $\gamma_{\rm pr}$ -set D in which $|\operatorname{epn}(v,D)|$ is small compared to $\gamma_{\rm pr}(G)$ for some vertex $v\in D$, then G is not a universal $\gamma_{\rm pr}$ -doubler. These cases suggest that vertices contained in $\gamma_{\rm pr}$ -sets of universal $\gamma_{\rm pr}$ -doublers have large degrees relative to $\gamma_{\rm pr}(G)$, and hence that $\gamma_{\rm pr}(G)$ is small compared to the order of G, which we denote throughout by n.

In this section we obtain necessary and sufficient conditions for a graph to be a universal $\gamma_{\rm pr}$ -doubler. These conditions easily lead to an upper bound on the paired domination number of a universal $\gamma_{\rm pr}$ -doubler G, and lower bounds on the degrees and number of external private neighbours of the vertices in $\gamma_{\rm pr}$ -sets of G.

We begin with a simple lemma.

Lemma 3. If $\gamma(G) = \gamma_{\rm pr}(G)$, then $n \geq 2\gamma_{\rm pr}(G)$ and G has a PDS of cardinality $\gamma_{\rm pr}(G) + 2i$ for each $1 \leq i \leq \gamma_{\rm pr}(G)/2$.

Proof. It is well known [9, Theorem 2.1] that $n \geq 2\gamma(G)$, so $n \geq 2\gamma_{\rm pr}(G)$. The latter part of the statement follows because each pair of vertices in a $\gamma_{\rm pr}$ -set X which is also a γ -set can be split into two pairs since each vertex of X has an external private neighbour [9, Theorem 1.1].

We next define notation that will be used throughout this section. Let

$$\begin{cases} X \subseteq V \text{ such that } 0 < |X| < \gamma_{\mathrm{pr}}(G); \\ Y = V - N[X]; \\ M \text{ be a matching of } \langle X \rangle; \\ Z = X - V(M), \text{ i.e., } Z \text{ is the set of } \overline{M}\text{-vertices in } X; \\ k = |Z|. \end{cases}$$

We now characterize universal γ_{pr} -doublers in terms of the cardinalities of the sets X, Y and Z as defined in (1).

Theorem 4. A graph G is a universal γ_{pr} -doubler if and only if, for each set $X \subseteq V$ with $0 < |X| < \gamma_{pr}(G)$, a maximum matching M of $\langle X \rangle$, and Y and K as defined in (1),

$$|Y| \ge 2\gamma_{\rm pr}(G) - |X| - k - 1.$$

Proof. Suppose that for some $X \subseteq V$ with $0 < |X| < \gamma_{\rm pr}(G)$,

$$|Y| < 2\gamma_{\rm pr}(G) - |X| - k - 1.$$

We consider two cases, depending on the parity of k.

Case 1. k is even.

Then by definition of Z, |X| is even. Choose a PDS D of G as follows.

- (i) If $|Y| + k \leq \gamma_{pr}(G)$, then let D be any γ_{pr} -set of G.
- (ii) Otherwise, let D be any PDS of G with |D| = |Y| + k if |Y| is even, or |D| = |Y| + k + 1 if |Y| is odd. (A PDS of this size exists by Lemma 3.)

Let π be any permutation of V such that $\pi(Y \cup Z) \subseteq D$ and $\langle \pi(Z) \rangle$ has a perfect matching M' that is contained in a D-matching. Then $W = X_1 \cup D_2$ dominates πG and $\langle W \rangle$ has a W-matching in which each edge u_2v_2 in M'_2 is replaced by two edges z_1u_2 and z'_1v_2 , where $z, z' \in Z$. (See Figure 2.)

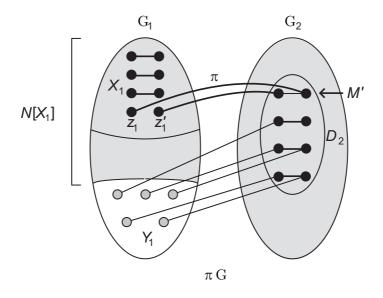


Figure 2. $X_1 \cup D_2$ dominates πG .

Therefore W is a PDS of πG . If D is a γ_{pr} -set of G (i.e., if D was defined in (i)), then

$$|W| = |X| + |D| < 2\gamma_{\rm pr}(G),$$

i.e., G is not a universal γ_{pr} -doubler. If D was defined in (ii), then

$$\begin{aligned} |W| &= |X| + |D| \\ &\leq |X| + |Y| + k + 1 \\ &< |X| + (2\gamma_{\rm pr}(G) - |X| - k - 1) + k + 1 \\ &= 2\gamma_{\rm pr}(G), \end{aligned}$$

and G is not a universal doubler in this case either.

Case 2. k is odd.

Then
$$|X|$$
 is odd. If $|X| = \gamma_{pr}(G) - 1$, then $|Y| \le \gamma_{pr}(G) - k - 1 = |X - Z|$.

Let π be any permutation of V such that

$$\pi(Y) \subseteq X - Z$$
, $\pi(Z) = Z$ and $Y \subseteq \pi(X - Z)$.

Then $W = X_1 \cup X_2$ dominates $\pi(G)$ and it is easy to see that $\langle W \rangle$ has a perfect matching. Therefore W is a PDS of πG and

$$|W| = 2|X| = 2\gamma_{\rm pr}(G) - 2,$$

so G is not a universal doubler.

Thus we assume that $0 < |X| < \gamma_{\rm pr}(G) - 2$. Similar to Case 1, we choose the PDS D of G as follows.

- (iii) If $|Y| + k \le \gamma_{pr}(G)$, let D be any γ_{pr} -set of G.
- (iv) Otherwise, let D be any PDS of G with |D| = |Y| + k 1 if |Y| is even, or |D| = |Y| + k if |Y| is odd.

Let $w \in Z$ and let π be any permutation of V such that $\pi(Y \cup Z - \{w\}) \subseteq D$, $\pi(Z - \{w\})$ has a perfect matching M' which is contained in a D-matching, and $\pi(w) = w' \in V - D$. Let $W = X_1 \cup D_2 \cup \{w'_2\}$. Since X_1 dominates $G_1 - Y_1$ and D_2 dominates G_2 and Y_1 , it follows that W dominates πG . Also, $\langle W \rangle$ has a perfect matching in which w_1 is paired with w'_2 , and each edge u_2v_2 in M'_2 is replaced by two edges z_1u_2 and z'_1v_2 , where $z, z' \in Z - \{w\}$. Therefore W is a PDS of G. If D was chosen in (iii) and thus is a γ_{pr} -set of G, then

$$|W| = |X| + |D| + 1 < \gamma_{\rm pr}(G) - 2 + \gamma_{\rm pr}(G) + 1 = 2\gamma_{\rm pr}(G) - 1$$

and G is not a universal γ_{pr} -doubler. On the other hand, if D was chosen in (iv), then $|D| \leq |Y| + k$, so

$$|W| = |X| + |D| + 1$$

 $< |X| + 2\gamma_{pr}(G) - |X| - k - 1 + k + 1$
 $= 2\gamma_{pr}(G)$

and once again G is not a universal $\gamma_{\rm pr}$ -doubler.

Conversely, let π be a permutation of V such that $\gamma_{\rm pr}(\pi G) < 2\gamma_{\rm pr}(G) - 1$ and consider any $\gamma_{\rm pr}$ -set W of πG . Define

$$X_1 = W \cap V_1$$
 and $D_2 = W \cap V_2$.

Assume without loss of generality that $|X_1| < \gamma_{\rm pr}(G)$. Let M' be a W-matching and let D_2' be the set of vertices in D_2 which are not paired with another vertex in D_2 under M'. Say $|D_2'| = k'$. Also, let k be the number of vertices not paired in a maximum matching of $\langle X_1 \rangle$. Note that $k \leq k'$.

If $X_1 \neq \emptyset$, then $|D_2| < 2\gamma_{\rm pr}(G) - |X| - 1$ and each vertex of $D_2 - D_2'$ dominates at most one vertex in Y_1 , while no vertex in D_2' dominates a vertex in Y_1 . Therefore $|Y_1| \leq |D_2 - D_2'|$, which implies that

$$|Y| < 2\gamma_{\rm DT}(G) - |X| - k' - 1 \le 2\gamma_{\rm DT}(G) - |X| - k - 1.$$

If $X_1 = \emptyset$, then D_2 dominates V_1 and so $D_2 = V_2$. Therefore $n = |D_2| < 2\gamma_{\rm pr}(G)$, so that by Lemma 3, $\gamma(G) < \gamma_{\rm pr}(G)$. Let X' be a γ -set of G, Y' = V - N[X'] and k' be the number of vertices not paired in a maximum matching of $\langle X' \rangle$. Since $k' \leq |X'| < \gamma_{\rm pr}(G)$,

(2)
$$|Y'| = 0 < 2\gamma_{\rm pr}(G) - |X'| - k' - 1.$$

As an example of universal γ_{pr} -doublers, consider the following family \mathcal{F} of graphs. Form the graph $F_{2n} \in \mathcal{F}$ by joining each vertex of C_{2n} to 2n-1 new vertices. Note that $\gamma_{pr}(F_{2n}) = \gamma(F_{2n}) = 2n$. Figure 3 shows the graph F_4 .

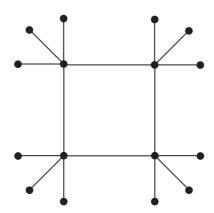


Figure 3. $F_4 \in \mathcal{F}$: An example of a universal γ_{pr} -doubler.

By Theorem 4, to prove that F_{2n} is a universal γ_{pr} -doubler, we must show that for each pair of sets $X, Y \subseteq V(F_{2n})$ as defined in (1), $|Y| \ge 2\gamma_{pr}(F_{2n}) - |X| - k - 1$. Suppose |X| = 2n - d, where $1 \le d \le 2n - 1$. It is easy to see

that $|Y| \geq d(2n-1)$. If d=1, then $k \geq 1$, hence

$$2\gamma_{\rm pr}(F_{2n}) - |X| - k - 1 \le 4n - (2n - 1) - 1 - 1 = 2n - 1 \le |Y|.$$

If $2 \le d \le 2n - 1$, then $k \ge 0$, hence

$$2\gamma_{\text{pr}}(F_{2n}) - |X| - k - 1 \le 4n - (2n - d) - 1$$

$$= 2n + d - 1$$

$$\le 2n + (2n - 1) - 1$$

$$= 2(2n - 1)$$

$$\le d(2n - 1)$$

$$\le |Y|.$$

Note that to construct a universal γ_{pr} -doubler G from C_{2n} by adding pendant edges at vertices of C_{2n} , at least 2n-1 pendant edges must be added at each vertex of C_{2n} . If some vertices of C_{2n} are joined to more than 2n-1 new vertices, the resulting graph is also a universal γ_{pr} -doubler.

Corollary 5. If $\gamma(G) = \gamma_{pr}(G) = 2$, then G is a universal γ_{pr} -doubler.

Proof. Suppose
$$\gamma(G) = \gamma_{pr}(G) = 2$$
. Let $x \in V$ and $Y = V - N[x]$. Since $\gamma(G) = 2$, $|Y| \ge 1$. The result follows from Theorem 4.

We use Theorem 4 to obtain the promised results on the degrees and number of external private neighbours of the vertices in $\gamma_{\rm pr}$ -sets of a universal $\gamma_{\rm pr}$ -doubler.

Corollary 6. Let G be a universal γ_{pr} -doubler and D any γ_{pr} -set of G. Then $|\operatorname{epn}(v,D)| \geq \gamma_{pr}(G) - 1$ for each $v \in D$.

Proof. Let $X = D - \{v\}$. Then $X \neq \emptyset$ because $\gamma_{pr}(G) \geq 2$, and k = 1 because there is only one vertex in X that is not paired. By Theorem 4,

$$|V - N[X]| \ge 2\gamma_{\rm pr}(G) - |X| - k - 1 = \gamma_{\rm pr}(G) - 1.$$

Since D is a dominating set, v dominates V - N[X]. Moreover, $v \notin V - N[X]$ because v is dominated by its partner in D. Hence $\operatorname{epn}(v, D) = V - N[X]$ and the result follows.

The converse of Corollary 6 is shown to be false by the counterexample in Figure 4. The black vertices form the set D, which is the only $\gamma_{\rm pr}$ -set of G, and for all $v \in D$, $|\operatorname{epn}(v,D)| = 3 = \gamma_{\rm pr}(G) - 1$. Let X consist of the circled vertices. Then

$$|Y| = |V - N[X]| = 2 < 2\gamma_{\rm pr}(G) - |X| - k - 1 = 3,$$

so by Theorem 4, G is not a universal γ_{pr} -doubler.

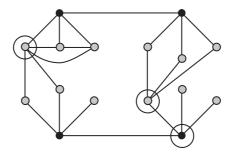


Figure 4. A counterexample to the converse of Corollary 6.

Corollary 7. If G is a universal γ_{pr} -doubler and $v \in V$ is contained in a γ_{pr} -set of G, then $\deg v \geq \gamma_{pr}(G)$.

Proof. Suppose D is a γ_{pr} -set of G and $v \in D$. By Corollary 6, $|\operatorname{epn}(v, D)| \ge \gamma_{pr}(G) - 1$. Since v is paired with some vertex in D, the result follows.

The complete graphs of order at least three show that the converse of Corollary 7 is not true.

Corollary 8. If G is a universal γ_{pr} -doubler of order n, then $\gamma_{\text{pr}}(G) \leq \sqrt{n}$.

Proof. By Corollary 7, deg $v \geq \gamma_{\rm pr}(G)$ for any vertex v of any $\gamma_{\rm pr}$ -set D of G. Hence $n \geq [\gamma_{\rm pr}(G)]^2$.

We conclude this section by obtaining a sufficient condition for regular graphs to be universal $\gamma_{\rm pr}$ -doublers. This allows us to construct a family of universal $\gamma_{\rm pr}$ -doublers.

The PDS D is an efficient paired dominating set (EPDS) if $N(u) \cap N(v) = \emptyset$ for any two vertices $u, v \in D$.

Lemma 9. If G is regular and has an EPDS D, then $\gamma_{pr}(G) = |D|$.

Proof. Let X be a γ_{pr} -set of G. Then $|X| \leq |D|$ and by regularity, $n \leq r|X|$. Since D is an EPDS, n = r|D|. Hence $|D| \leq |X|$ and so D is a γ_{pr} -set of G.

Corollary 10. If G is r-regular with $r \ge \gamma_{pr}(G)$ and G has an EPDS, then G is a universal γ_{pr} -doubler.

Proof. Let $X \subseteq V$ with $0 < |X| < \gamma_{\rm pr}(G)$ and define Y and k as in (1). Then $|N[X]| \le r|X| + k$. Since G has an EPDS, $n = r\gamma_{\rm pr}(G)$. Then

$$|Y| \ge r\gamma_{\mathrm{pr}}(G) - r|X| - k \ge \gamma_{\mathrm{pr}}(G)(\gamma_{\mathrm{pr}}(G) - |X|) - k.$$

If $|X| = \gamma_{\rm pr}(G) - 1$, then

$$|Y| \ge \gamma_{\rm pr}(G) - k = 2\gamma_{\rm pr}(G) - |X| - k - 1,$$

and if $|X| \leq \gamma_{\rm pr}(G) - 2$, then

$$|Y| \geq 2\gamma_{\rm pr}(G) - k$$
.

In either case the hypothesis of Theorem 4 is satisfied and it follows that G is a universal γ_{pr} -doubler.

Corollary 10 allows us to construct a family \mathcal{H} of regular universal γ_{pr} -doublers. Label the vertices of C_{2m} consecutively by $u_1, v_1, u_2, v_2, \ldots, u_m, v_m$. Construct each $H_{2m,r} \in \mathcal{H}$ by replacing alternate edges $u_i v_i$, $i=1,\ldots,m$, of C_{2m} by a copy of $B_i \cong K_{r-1,r-1}$, $r \geq 2m$, joining u_i to each vertex in one partite set, and v_i to each vertex in the other partite set of B_i . See Figure 5 for $H_{4,4}$.

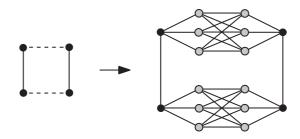


Figure 5. The 4-regular universal γ_{pr} -doubler $H_{4,4}$.

Clearly, $H_{2m,r}$ is r-regular. It is also easy to see that $\bigcup_{i=1}^{m} \{u_i, v_i\}$ forms an efficient γ_{pr} -set of $H_{2m,r}$ (in which each v_i is partnered by $u_{i+1 \pmod{m}}$). By Corollary 10, $H_{2m,r}$ is a universal γ_{pr} -doubler.

4. Prism Doublers

It is reasonable to expect that there are graphs that are prism $\gamma_{\rm pr}$ -doublers but not universal $\gamma_{\rm pr}$ -doublers. In this section we first supply necessary and sufficient conditions in Theorem 11, and then a simpler sufficient condition in Proposition 12, for a graph to be a prism doubler. The latter result combined with Corollary 6 allows us to construct prism $\gamma_{\rm pr}$ -doublers that are not universal $\gamma_{\rm pr}$ -doublers.

Theorem 11. A graph G is a prism γ_{pr} -doubler if and only if for each set $X \subseteq V$ with $0 < |X| < \gamma_{pr}(G)$, any matching M of $\langle X \rangle$, and Y and k as defined in (1), either

- (i) $|Y| \ge 2\gamma_{\rm pr}(G) |X| k 1$, or
- (ii) $|Y| = 2\gamma_{\rm pr}(G) |X| k d 1$, where $d \ge 1$, and if $A \subseteq N[X] Z$ dominates $N\{X\} N[Y] N[Z]$ and $\langle A \cup Y \rangle$ has a perfect matching, then $|A| \ge d$.

Proof. Assume $\gamma_{\rm pr}(K_2 \square G) = 2\gamma_{\rm pr}(G)$ and consider any pair of sets X, Y as defined in (1) and a matching M of $\langle X \rangle$. If $|Y| \ge 2\gamma_{\rm pr}(G) - |X| - k - 1$ then we are done, so assume $|Y| = 2\gamma_{\rm pr}(G) - |X| - k - d - 1$ for some $d \ge 1$.

Suppose to the contrary that there exists a set $A \subseteq N[X] - Z$ such that A dominates $N\{X\} - N[Y] - N[Z]$ and $\langle A \cup Y \rangle$ has a perfect matching M^* , but $|A| \leq d-1$. Define the set $W \subseteq V(K_2 \square G)$ by $W = X_1 \cup Y_2 \cup A_2 \cup Z_2$. By the definition of X and Y, $X_1 \cup Y_2$ dominates G_1 . Since A_2 dominates $N\{X_2\} - N[Y_2] - N[Z_2]$, W also dominates G_2 . Thus W dominates G_3 . Moreover, $M \cup M^* \cup \{z_1z_2 : z \in Z\}$ is a W-matching, so W is a PDS of G_3 But

$$|W| = |X| + |Y| + |Z| + |A|$$

$$\leq |X| + (2\gamma_{\rm pr}(G) - |X| - k - d - 1) + k + (d - 1)$$

$$= 2\gamma_{\rm pr}(G) - 2,$$

a contradiction. Thus (ii) holds.

Conversely, assume $\gamma_{\rm pr}(K_2 \square G) < 2\gamma_{\rm pr}(G) - 1$ and let $W = X_1 \cup D_2$ be a $\gamma_{\rm pr}$ -set of $K_2 \square G$. We may assume without loss of generality that $|X| < \gamma_{\rm pr}(G)$.

We consider two cases, depending on whether $X = \emptyset$ or $X \neq \emptyset$.

Case 1.
$$X = \emptyset$$
.

Then $D_2 = V_2$ to dominate G_1 . Therefore

$$|W| = |D| = n \le 2\gamma_{\rm pr}(G) - 2.$$

By Lemma 3, $\gamma(G) < \gamma_{\rm pr}(G)$. Let X' be a γ -set of G, M' be a maximum matching of $\langle X' \rangle$, Z' the set of $\overline{M'}$ -vertices in X' and k' = |Z'|. Then k' > 0 because X' is not a PDS of G, and $Y' = V - N[X'] = \emptyset$ because X' dominates G. But

$$2\gamma_{\rm pr}(G) - |X'| - k' - 1 \ge 2\gamma_{\rm pr}(G) - 2|X'| - 1 > 0 = |Y'|$$

and so (i) does not hold. Hence there exists a positive integer d such that

$$0 = |Y'| = 2\gamma_{\rm pr}(G) - |X'| - k' - d - 1,$$
 i.e., $d = 2\gamma_{\rm pr}(G) - |X'| - k' - 1.$

Let A' = X' - Z'. Then $A' \subseteq N[X'] - Z'$, A' dominates $N\{X'\} - N[Y'] - N[Z']$ and, since $Y' = \emptyset$, M' is a perfect matching of $\langle A' \cup Y' \rangle$. But

$$|A'| = |X'| - k' = 2|X'| - |X'| - k' < 2\gamma_{\rm DF}(G) - |X'| - k' - 1 = d,$$

thus (ii) also does not hold.

Case 2.
$$X \neq \emptyset$$
.

Let M^* be a W-matching, let M_1 be the matching of $\langle X_1 \rangle$ induced by M^* , and let Z_1 be the set of vertices in X_1 which are paired with vertices in D_2 (i.e., the vertices in Z_2) under M^* . Then in G, Z is the set of \overline{M} -vertices in X, and $Z \subseteq D$. Define Y and k as in (1). Since D_2 dominates Y_1 , $Y_2 \subseteq D_2$ and so $Y \subseteq D$. Moreover, $Y \cap Z = \emptyset$. Hence

$$|Y| \le |D| - |Z| < 2\gamma_{\rm pr}(G) - |X| - 1 - k.$$

Therefore (i) does not hold.

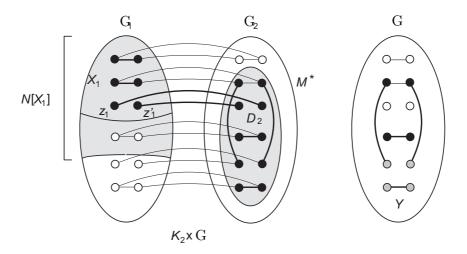


Figure 6. $\langle A \cup Y \rangle$ has a perfect matching in G.

Let A = D - Z - Y. Then $A \subseteq N[X] - Z$. Since D_2 dominates all vertices of G_2 except possibly the vertices in $X_2 - D_2$, D dominates $N\{X\}$, and so A dominates $N\{X\} - N[Y] - N[Z]$. Moreover, $A \cup Y = D - Z$ and so $\langle A \cup Y \rangle$ has a perfect matching (corresponding to the edges of M^* with both endvertices in D_2). (See Figure 6, where the black vertices indicate X_1 in G_1 , D_2 in G_2 , and A in G, the grey vertices indicate Y in G, and the dark edges indicate the matching M^* in $K_2 \square G$ and the perfect matching in $A \cup Y$.) Since

$$Y = D - Z - A$$
, $A \cup Z \subseteq D$ and $A \cap Z = \emptyset$,

it follows that

$$|Y| = |D| - |Z| - |A| < 2\gamma_{\rm pr}(G) - 1 - |X| - k - |A|.$$

Thus

$$|Y| = 2\gamma_{\rm pr}(G) - |X| - k - d - 1$$

for some d > |A|, and so (ii) also does not hold.

The following proposition enables us to describe classes of prism $\gamma_{\rm pr}$ -doublers that are not universal $\gamma_{\rm pr}$ -doublers.

Proposition 12. If every vertex that is contained in a γ_{pr} -set of $G \neq K_2$ is adjacent to at least one leaf, then G is a prism γ_{pr} -doubler.

Proof. It is obvious that any support vertex of a graph G is contained in each PDS of G. Thus, if G satisfies the hypothesis, then $\gamma_{\rm pr}(G)=k$, where k is the number of support vertices of G. Say $u \in V$ is adjacent to the leaf v. Then in $K_2 \square G$, u_1, v_1, v_2, u_2, u_1 is an induced 4-cycle, and $\deg v_1 = \deg v_2 = 2$. Thus any PDS of $K_2 \square G$ contains at least two of these vertices, so that $\gamma_{\rm pr}(K_2 \square G) \geq 2k$, and the result follows.

Now let H be a graph of order $k \geq 4$ that has a perfect matching and let G be any graph obtained by joining each vertex of H to at least one leaf, and some vertex v to at most k-2 leaves. By Proposition 12, G is a prism $\gamma_{\rm pr}$ -doubler with $\gamma_{\rm pr}$ -set V(H) and $\gamma_{\rm pr}(G) = k$. However, by Corollary 6, G is not a universal $\gamma_{\rm pr}$ -doubler, because $|\exp(v, V(H))| \leq k-2 < \gamma_{\rm pr}(G) - 1 = k-1$.

5. Prism Fixers

Since $\gamma_{\rm pr}(K_2 \square G) \leq 2\gamma(G)$ for any graph G, it is immediately clear that if $\gamma_{\rm pr}(G) = 2\gamma(G)$, then G is a prism $\gamma_{\rm pr}$ -fixer. Examples of such graphs include nontrivial complete graphs, P_5 , C_5 and C_6 . We now extend this result to determine a necessary and sufficient condition for a graph to be a prism $\gamma_{\rm pr}$ -fixer.

Let $S \subseteq V$ such that $\langle S \rangle$ has a perfect matching M. A paired partition of S is a partition S_1, \ldots, S_k such that each edge of M is contained in $\langle S_i \rangle$ for some i. A weak paired partition is a paired partition in which some of the sets may be empty. A split of S is a partition $S = S_1 \cup S_2$ such that each edge of M has one endvertex in S_1 and the other one in S_2 .

In our next theorem we consider a weak paired partition $S = D \cup Y \cup Z$ of a γ_{pr} -set S of G, and define $U = (V - S) \cap N[D] \cap N[Z]$ and X = V - S - U. Note that each vertex in U is adjacent to a vertex in D and to a vertex in Z, each vertex in X is adjacent to vertices in at most one of D and Z, and any vertex of G - S may or may not be adjacent to a vertex in Y. See Figure 7, where S consists of the black vertices, U of the grey vertices and X of the white vertices, and where the vertices in D are indicated by circles, those in Z by squares, and those in Y by triangles.

Theorem 13. A graph G is a prism γ_{pr} -fixer if and only if G has a γ_{pr} -set S with a weak paired partition $S = D \cup Y \cup Z$ in which Y has a split $Y = Y' \cup Y''$ such that Y' dominates $X = V - S - (N[D] \cap N[Z])$.

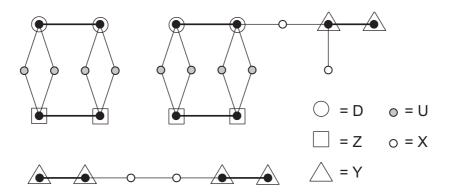


Figure 7. Examples of weak paired partitions.

Proof. Suppose G is a prism γ_{pr} -fixer and let W be a γ_{pr} -set of $K_2 \square G$. Say $D_1' = W \cap V_1$ and $Z_2' = W \cap V_2$. Let M^* be a W-matching in which as few vertices as possible are matched with their own image. Let

$$\begin{split} S' &= D' \cup Z', \\ Y' &= D' \cap Z', \\ M' \text{ be the matching of } \langle S' \rangle \text{ induced by } M^*, \\ R \text{ be the set of } \overline{M'}\text{-vertices.} \end{split}$$

Then S' dominates G, $R \subseteq Y'$, and if $u \in R$, then $u_1u_2 \in E(M^*)$. Say $R = \{u^1, \ldots, u^k\}$, let $S^0 = S'$ and for $i = 1, \ldots, k$, construct S^i recursively as follows.

- (i) If u^i is adjacent to $s^i \in V S^{i-1}$, let $S^i = S^{i-1} \cup \{s^i\}$.
- (ii) Otherwise, u^i is adjacent to some vertex in S^{i-1} because G is isolate-free, hence $N[u^i] \subseteq S^{i-1}$; let $S^i = S^{i-1} \{u^i\}$.

Then S^k dominates G, $\langle S^k \rangle$ has a perfect matching and thus S^k is a PDS of G. Moreover,

(3)
$$|S^k| \le |D'| + |Z'| - |Y'| + |R| \le |W|.$$

But G is a prism γ_{pr} -fixer, so equality holds in (3). In particular, R = Y' and each S^i is constructed as described in (i). Moreover, Y' is independent, for if $u, v \in Y'$ and $uv \in E$, then $u_1u_2, v_1v_2 \in E(M^*)$ (since u and v are $\overline{M'}$ -vertices) and $(M^* - \{u_1u_2, v_1v_2\}) \cup \{u_1v_1, u_2v_2\}$ is a W-matching in which

fewer vertices are mapped to their own images than in M^* , contradicting the choice of M^* .

Let

$$S = S^k$$
, $D = D' - Y'$, $Z = Z - Y'$, $Y = S - D - Z$ and $Y'' = Y - Y'$.

Then $D \cup Z \cup Y$ is a weak paired partition of S and $Y' \cup Y''$ is a split of Y and we only need to prove that Y' dominates X. Suppose $x \in X$. We assume that $x \notin N[D]$; the case $x \notin N[Z]$ is similar. Since $x \notin S$, $x_1 \notin D'_1$ and $x_2 \notin Z'_2$. Thus x_1 is dominated in G_1 by a vertex in $D'_1 - D_1$, i.e., by a vertex in Y'_1 . Therefore x is dominated by a vertex in Y' as required.

Conversely, assume G has a γ_{pr} -set S that satisfies the conditions of the theorem. Then $D_1 \cup Y_1'$ dominates $(G_1 - Z_1) \cup D_2$, and $Z_2 \cup Y_2'$ dominates $(G_2 - D_2) \cup Z_1$. Hence $W = D_1 \cup Z_2 \cup Y_1' \cup Y_2'$ is a PDS of $K_2 \square G$ and $|W| = |S| = \gamma_{\text{pr}}(G)$. By Proposition 1, W is a γ_{pr} -set of $K_2 \square G$.

The three graphs in Figure 7 are examples of prism γ_{pr} -fixers. Other examples of prism fixers include K_n for $n \geq 2$, P_n for $n \in \{3, 5, 6, 9\}$ and C_n for $n \in \{5, 6, 9\}$. (This list contains all paths and cycles that are prism γ_{pr} -fixers.)

6. Problems

We conclude with open problems related to the above material. The graph G in Figure 1 illustrates that the paired domination number of a graph may exceed the paired domination number of some of its generalized prisms. Note that this graph is $\gamma_{\rm pr}$ -edge-critical, i.e., $\gamma_{\rm pr}(G+e) < \gamma_{\rm pr}(G)$ for each edge $e \in E(\overline{G})$. (See [5], for example.)

Problem 1.

- (i) Characterize the class of graphs G with $\gamma_{\rm pr}(\pi G) < \gamma_{\rm pr}(G)$ for some permutation π of V.
- (ii) If $\gamma_{\text{pr}}(\pi G) < \gamma_{\text{pr}}(G)$ for some permutation π of V, what is $\max_{\pi \in S_n} {\{\gamma_{\text{pr}}(\pi G)\}}$?
- (iii) What is $\min_{\pi \in S_n} \{ \gamma_{pr}(\pi G) / \gamma_{pr}(G) \}$?
- (iv) If $\gamma_{\rm pr}(\pi G) < \gamma_{\rm pr}(G)$ for some permutation π of V, does it follow that G is $\gamma_{\rm pr}$ -edge-critical? (The converse is not true—consider C_5 .)

For the usual domination number γ , it is still an open problem to find a nontrivial connected universal fixer, or to show that no such graph exists. The corresponding problem for the paired domination number (for graphs G with $\gamma_{\rm pr}(G) \leq \gamma_{\rm pr}(\pi G)$ for all permutations π of V) has not been studied at all. It is easy to see that nontrivial complete graphs are universal $\gamma_{\rm pr}$ -fixers, but none of the other graphs listed at the end of Section 5 is a universal $\gamma_{\rm pr}$ -fixer.

Problem 2. Prove or disprove Conjecture 1: The graphs $\overline{K_n}$, $n \geq 1$, are the only universal γ -fixers.

Problem 3.

- (i) Characterize the class of universal $\gamma_{\rm pr}$ -fixers.
- (ii) Failing (i), find examples of noncomplete universal γ_{pr} -fixers.

References

- [1] B. Brešar, M.A. Henning and D.F. Rall, Paired-domination of Cartesian products of graphs, Util. Math. 73 (2007) 255–265.
- [2] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. **310** (2010) 364–368.
- [3] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory **24** (2004) 303–318.
- [4] E.J. Cockayne, R.G. Gibson and C.M. Mynhardt, *Claw-free graphs are not universal fixers*, Discrete Math. **309** (2009) 128–133.
- [5] M. Edwards, R.G. Gibson, M.A. Henning and C.M. Mynhardt, On paired-domination edge critical graphs, Australasian J. Combin. 40 (2008) 279–292.
- [6] R.G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 (2008) 5937–5943.
- [7] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. $\bf 82$ (1991) 87–96.
- [8] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K_2 , Discuss. Math. Graph Theory 24 (2004) 389–402.
- [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).

- [10] C.M. Mynhardt and Z. Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math. **78** (2009) 185–201.
- [11] M. Schurch, Domination Parameters for Prisms of Graphs (Master's thesis, University of Victoria, 2005).

Received 29 January 2009 Revised 27 July 2009 Accepted 27 July 2009