Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
The paired domination number $γ_{pr}(G)$ of a graph G is the smallest cardinality of a dominating set S of G such that ⟨S⟩ has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V(G)| independent edges. We provide characterizations of the following three classes of graphs: $γ_{pr}(πG) = 2γ_{pr}(G)$ for all πG; $γ_{pr}(K₂☐ G) = 2γ_{pr}(G)$; $γ_{pr}(K₂☐ G) = γ_{pr}(G)$.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
5-23
Opis fizyczny
Daty
wydano
2011
otrzymano
2009-01-29
poprawiono
2009-07-27
zaakceptowano
2009-07-27
Twórcy
autor
- Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria, BC, Canada V8W 3R4
autor
- Department of Mathematics and Statistics, University of Victoria, P.O. Box 3060 STN CSC, Victoria, BC, Canada V8W 3R4
Bibliografia
- [1] B. Bresar, M.A. Henning and D.F. Rall, Paired-domination of Cartesian products of graphs, Util. Math. 73 (2007) 255-265.
- [2] A.P. Burger and C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Math. 310 (2010) 364-368, doi: 10.1016/j.disc.2008.09.016.
- [3] A.P. Burger, C.M. Mynhardt and W.D. Weakley, On the domination number of prisms of graphs, Discuss. Math. Graph Theory 24 (2004) 303-318, doi: 10.7151/dmgt.1233.
- [4] E.J. Cockayne, R.G. Gibson and C.M. Mynhardt, Claw-free graphs are not universal fixers, Discrete Math. 309 (2009) 128-133, doi: 10.1016/j.disc.2007.12.053.
- [5] M. Edwards, R.G. Gibson, M.A. Henning and C.M. Mynhardt, On paired-domination edge critical graphs, Australasian J. Combin. 40 (2008) 279-292.
- [6] R.G. Gibson, Bipartite graphs are not universal fixers, Discrete Math. 308 (2008) 5937-5943, doi: 10.1016/j.disc.2007.11.006.
- [7] B.L. Hartnell and D.F. Rall, On Vizing's conjecture, Congr. Numer. 82 (1991) 87-96.
- [8] B.L. Hartnell and D.F. Rall, On dominating the Cartesian product of a graph and K₂, Discuss. Math. Graph Theory 24 (2004) 389-402, doi: 10.7151/dmgt.1238.
- [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, New York, 1998).
- [10] C.M. Mynhardt and Z. Xu, Domination in prisms of graphs: Universal fixers, Utilitas Math. 78 (2009) 185-201.
- [11] M. Schurch, Domination Parameters for Prisms of Graphs (Master's thesis, University of Victoria, 2005).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1526