ArticleOriginal scientific text

Title

n-ary transit functions in graphs

Authors 1, 1, 2, 3

Affiliations

  1. Department of Futures Studies, University of Kerala, Trivandrum, India
  2. Institute of Mathematics and Physics, FEECS, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia
  3. Department of Mathematics, Government College, Chittur, Palakkad - 678 104, India

Abstract

n-ary transit functions are introduced as a generalization of binary (2-ary) transit functions. We show that they can be associated with convexities in natural way and discuss the Steiner convexity as a natural n-ary generalization of geodesicaly convexity. Furthermore, we generalize the betweenness axioms to n-ary transit functions and discuss the connectivity conditions for underlying hypergraph. Also n-ary all paths transit function is considered.

Keywords

n-arity, transit function, betweenness, Steiner convexity

Bibliography

  1. B. Bresar, M. Changat, J. Mathews, I. Peterin, P.G. Narasimha-Shenoi and A. Tepeh Horvat, Steiner intervals, geodesic intervals, and betweenness, Discrete Math. 309 (2009) 6114-6125, doi: 10.1016/j.disc.2009.05.022.
  2. M. Changat, S. Klavžar and H.M. Mulder, The All-Paths Transit Function of a Graph, Czechoslovak Math. J. 51 (126) (2001) 439-448.
  3. M. Changat and J. Mathew, Induced path transit function, monotone and Peano axioms, Discrete Math. 286 (2004) 185-194, doi: 10.1016/j.disc.2004.02.017.
  4. M. Changat and J. Mathew, Characterizations of J-monotone graphs, in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 47-55.
  5. M. Changat, J. Mathew and H.M. Mulder, Induced path function, betweenness and monotonicity, Discrete Appl. Math. 158 (2010) 426-433, doi: 10.1016/j.dam.2009.10.004.
  6. M. Changat, J. Mathew and H.M. Mulder, Induced path transit function, betweenness and monotonicity, Elect. Notes Discrete Math. 15 (2003).
  7. M. Changat, H.M. Mulder and G. Sierksma, Convexities Related to Path Properties on Graphs, Discrete Math. 290 (2005) 117-131, doi: 10.1016/j.disc.2003.07.014.
  8. M. Changat, P.G. Narasimha-Shenoi and I.M. Pelayo, The longest path transit function and its betweenness, to appear in Util. Math.
  9. P. Duchet, Convexity in combinatorial structures, Rend. Circ. Mat. Palermo (2) Suppl. 14 (1987) 261-293.
  10. P. Duchet, Convex sets in graphs II. Minimal path convexity, J. Combin. Theory (B) 44 (1988) 307-316, doi: 10.1016/0095-8956(88)90039-1.
  11. P. Duchet, Discrete convexity: retractions, morphisms and partition problem, in: Proceedings of the conference on graph connections, India, (1998), Allied Publishers, New Delhi, 10-18.
  12. P. Hall, On representation of subsets, J. Lon. Mat. Sc. 10 (1935) 26-30, doi: 10.1112/jlms/s1-10.37.26.
  13. M.A. Morgana and H.M. Mulder, The induced path convexity, betweenness and svelte graphs, Discrete Math. 254 (2002) 349-370, doi: 10.1016/S0012-365X(01)00296-5.
  14. H.M. Mulder, The Interval Function of a Graph. Mathematical Centre Tracts 132, Mathematisch Centrum (Amsterdam, 1980).
  15. H.M. Mulder, Transit functions on graphs (and posets), in: Convexity in Discrete Structures (M. Changat, S. Klavžar, H.M. Mulder, A. Vijayakumar, eds.), Lecture Notes Ser. 5, Ramanujan Math. Soc. (2008) 117-130.
  16. L. Nebeský, A characterization of the interval function of a connected graph, Czechoslovak Math. J. 44(119) (1994) 173-178.
  17. L. Nebeský, A Characterization of the interval function of a (finite or infinite) connected graph, Czechoslovak Math. J. 51(126) (2001) 635-642.
  18. E. Sampathkumar, Convex sets in graphs, Indian J. Pure Appl. Math. 15 (1984) 1065-1071.
  19. M.L.J. van de Vel, Theory of Convex Structures (North Holland, Amsterdam, 1993).
Pages:
671-685
Main language of publication
English
Received
2009-11-11
Accepted
2010-03-02
Published
2010
Exact and natural sciences