PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 30 | 4 | 651-661
Tytuł artykułu

Clique graph representations of ptolemaic graphs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A graph is ptolemaic if and only if it is both chordal and distance-hereditary. Thus, a ptolemaic graph G has two kinds of intersection graph representations: one from being chordal, and the other from being distance-hereditary. The first of these, called a clique tree representation, is easily generated from the clique graph of G (the intersection graph of the maximal complete subgraphs of G). The second intersection graph representation can also be generated from the clique graph, as a very special case of the main result: The maximal Pₙ-free connected induced subgraphs of the p-clique graph of a ptolemaic graph G correspond in a natural way to the maximal $P_{n+1}$-free induced subgraphs of G in which every two nonadjacent vertices are connected by at least p internally disjoint paths.
Wydawca
Rocznik
Tom
30
Numer
4
Strony
651-661
Opis fizyczny
Daty
wydano
2010
otrzymano
2009-04-17
poprawiono
2010-02-23
zaakceptowano
2010-03-02
Twórcy
  • Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435, USA
Bibliografia
  • [1] H.-J. Bandelt and E. Prisner, Clique graphs and Helly graphs, J. Combin. Theory (B) 51 (1991) 34-45, doi: 10.1016/0095-8956(91)90004-4.
  • [2] B.-L. Chen and K.-W. Lih, Diameters of iterated clique graphs of chordal graphs, J. Graph Theory 14 (1990) 391-396, doi: 10.1002/jgt.3190140311.
  • [3] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, Society for Industrial and Applied Mathematics (Philadelphia, 1999).
  • [4] E. Howorka, A characterization of ptolemaic graphs, J. Graph Theory 5 (1981) 323-331, doi: 10.1002/jgt.3190050314.
  • [5] T.A. McKee, Maximal connected cographs in distance-hereditary graphs, Utilitas Math. 57 (2000) 73-80.
  • [6] T.A. McKee and F.R. McMorris, Topics in Intersection Graph Theory, Society for Industrial and Applied Mathematics (Philadelphia, 1999).
  • [7] F. Nicolai, A hypertree characterization of distance-hereditary graphs, Tech. Report Gerhard-Mercator-Universität Gesamthochschule (Duisburg SM-DU-255, 1994).
  • [8] E. Prisner, Graph Dynamics, Pitman Research Notes in Mathematics Series #338 (Longman, Harlow, 1995).
  • [9] J.L. Szwarcfiter, A survey on clique graphs, in: Recent advances in algorithms and combinatorics, pp. 109-136, CMS Books Math./Ouvrages Math. SMC 11 (Springer, New York, 2003).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1520
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.