ArticleOriginal scientific text

Title

The Wiener number of powers of the Mycielskian

Authors 1, 1

Affiliations

  1. Srinivasa Ramanujan Centre, SASTRA University, Kumbakonam-612 001, India

Abstract

The Wiener number of a graph G is defined as 12u,vV(G)d(u,v), d the distance function on G. The Wiener number has important applications in chemistry. We determine a formula for the Wiener number of an important graph family, namely, the Mycielskians μ(G) of graphs G. Using this, we show that for k ≥ 1, W(μ(Sk))W(μ(Tk))W(μ(Pk)), where Sₙ, Tₙ and Pₙ denote a star, a general tree and a path on n vertices respectively. We also obtain Nordhaus-Gaddum type inequality for the Wiener number of μ(Gk).

Keywords

Wiener number, Mycielskian, powers of a graph

Bibliography

  1. X. An and B. Wu, The Wiener index of the kth power of a graph, Appl. Math. Lett. 21 (2007) 436-440, doi: 10.1016/j.aml.2007.03.025.
  2. R. Balakrishanan and S.F. Raj, The Wiener number of Kneser graphs, Discuss. Math. Graph Theory 28 (2008) 219-228, doi: 10.7151/dmgt.1402.
  3. R. Balakrishanan, N. Sridharan and K.V. Iyer, Wiener index of graphs with more than one cut vertex, Appl. Math. Lett. 21 (2008) 922-927, doi: 10.1016/j.aml.2007.10.003.
  4. R. Balakrishanan, N. Sridharan and K.V. Iyer, A sharp lower bound for the Wiener Index of a graph, to appear in Ars Combinatoria.
  5. R. Balakrishanan, K. Viswanathan and K.T. Raghavendra, Wiener Index of Two Special Trees, MATCH Commun. Math. Comput. Chem. 57 (2007) 385-392.
  6. G.J. Chang, L. Huang and X. Zhu, Circular Chromatic Number of Mycielski's graphs, Discrete Math. 205 (1999) 23-37, doi: 10.1016/S0012-365X(99)00033-3.
  7. A.A. Dobrynin, I. Gutman, S. Klavžar and P. Zigert, Wiener Index of Hexagonal Systems, Acta Appl. Math. 72 (2002) 247-294, doi: 10.1023/A:1016290123303.
  8. H. Hajibolhassan and X. Zhu, The Circular Chromatic Number and Mycielski construction, J. Graph Theory 44 (2003) 106-115, doi: 10.1002/jgt.10128.
  9. D. Liu, Circular Chromatic Number for iterated Mycielski graphs, Discrete Math. 285 (2004) 335-340, doi: 10.1016/j.disc.2004.01.020.
  10. Liu Hongmei, Circular Chromatic Number and Mycielski graphs, Acta Mathematica Scientia 26B (2006) 314-320.
  11. J. Mycielski, Sur le colouriage des graphes, Colloq. Math. 3 (1955) 161-162.
  12. E.A. Nordhaus and J.W. Gaddum, On complementary graphs, Amer. Math. Monthly 63 (1956) 175-177, doi: 10.2307/2306658.
  13. H. Wiener, Structural Determination of Paraffin Boiling Points, J. Amer. Chem. Soc. 69 (1947) 17-20, doi: 10.1021/ja01193a005.
  14. L. Xu and X. Guo, Catacondensed Hexagonal Systems with Large Wiener Numbers, MATCH Commun. Math. Comput. Chem. 55 (2006) 137-158.
  15. L. Zhang and B. Wu, The Nordhaus-Gaddum-type inequalities for some chemical indices, MATCH Commun. Math. Comput. Chem. 54 (2005) 189-194.
Pages:
489-498
Main language of publication
English
Received
2008-11-14
Accepted
2009-10-08
Published
2010
Exact and natural sciences