Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
By a result of McKenzie [7] all finite directed graphs that satisfy certain connectivity conditions have unique prime factorizations with respect to the cardinal product. McKenzie does not provide an algorithm, and even up to now no polynomial algorithm that factors all graphs satisfying McKenzie's conditions is known. Only partial results [1,3,5] have been published, all of which depend on certain thinness conditions of the graphs to be factored.
In this paper we weaken the thinness conditions and thus significantly extend the class of graphs for which the prime factorization can be found in polynomial time.
In this paper we weaken the thinness conditions and thus significantly extend the class of graphs for which the prime factorization can be found in polynomial time.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
461-474
Opis fizyczny
Daty
wydano
2010
otrzymano
2009-07-16
poprawiono
2009-10-07
zaakceptowano
2009-10-12
Twórcy
autor
- Chair of Applied Mathematics, Montanuniversität, 8700 Leoben, Austria
autor
- Chair of Applied Mathematics, Montanuniversität, 8700 Leoben, Austria
Bibliografia
- [1] J. Feigenbaum and A.A. Schäffer, Finding the prime factors of strong direct product graphs in polynomial time, Discrete Math. 109 (1992) 77-102, doi: 10.1016/0012-365X(92)90280-S.
- [2] M. Hellmuth, W. Imrich, W. Klöckl and P. Stadler, Approximate graph products, Europ. J. Combinatorics 30 (2009) 1119-1133, doi: 10.1016/j.ejc.2008.09.006.
- [3] W. Imrich, Factoring cardinal product graphs in polynomial time, Discrete Math. 192 (1998) 119-144, doi: 10.1016/S0012-365X(98)00069-7.
- [4] W. Imrich and S. Klavžar, Product graphs, Wiley-Interscience Series in Discrete Mathematics and Optimization (Wiley-Interscience, New York, 2000), Structure and recognition, With a foreword by Peter Winkler.
- [5] W. Imrich and W. Klöckl, Factoring directed graphs with respect to the cardinal product in polynomial time, Discuss. Math. Graph Theory 27 (2007) 593-601, doi: 10.7151/dmgt.1385.
- [6] W. Klöckl, On the cardinal product, Ph.D. thesis (Montanuniversität Leoben, Austria, 2007).
- [7] R. McKenzie, Cardinal multiplication of structures with a reflexive relation, Fund. Math. 70 (1971) 59-101.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1507