PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 30 | 3 | 425-435
Tytuł artykułu

A characterization of (γₜ,γ₂)-trees

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let γₜ(G) and γ₂(G) be the total domination number and the 2-domination number of a graph G, respectively. It has been shown that: γₜ(T) ≤ γ₂(T) for any tree T. In this paper, we provide a constructive characterization of those trees with equal total domination number and 2-domination number.
Słowa kluczowe
Wydawca
Rocznik
Tom
30
Numer
3
Strony
425-435
Opis fizyczny
Daty
wydano
2010
otrzymano
2009-02-27
poprawiono
2009-07-28
zaakceptowano
2009-09-01
Twórcy
autor
  • Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China
autor
  • Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China
autor
  • Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China
autor
  • Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China
Bibliografia
  • [1] M. Blidia, M. Chellalia and T.W. Haynes, Characterizations of trees with equal paired and double domination numbers, Discrete Math. 306 (2006) 1840-1845, doi: 10.1016/j.disc.2006.03.061.
  • [2] M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010.
  • [3] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980) 211-219, doi: 10.1002/net.3230100304.
  • [4] E.J. Cockayne, O. Favaron, C.M. Mynhardt and J. Puech, A characterization of (γ,i)-trees, J. Graph Theory 34 (2000) 277-292, doi: 10.1002/1097-0118(200008)34:4<277::AID-JGT4>3.0.CO;2-#
  • [5] G. Chartrant and L. Lesniak, Graphs & Digraphs, third ed. (Chapman & Hall, London, 1996).
  • [6] J.F. Fink and M.S. Jacobson, n-Domination in graphs, in: Y. Alavi, A.J. Schwenk (eds.), Graph Theory with Applications to Algorithms and Computer Science (Wiley, New York, 1985) 283-300.
  • [7] F. Harary and M. Livingston, Characterization of trees with equal domination and independent domination numbers, Congr. Numer. 55 (1986) 121-150.
  • [8] T.W. Haynes, S.T. Hedetniemi, M.A. Henning and P.J. Slater, H-forming sets in graphs, Discrete Math. 262 (2003) 159-169, doi: 10.1016/S0012-365X(02)00496-X.
  • [9] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998).
  • [10] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998).
  • [11] T.W. Haynes, M.A. Henning and P.J. Slater, Strong quality of domination parameters in trees, Discrete Math. 260 (2003) 77-87, doi: 10.1016/S0012-365X(02)00451-X.
  • [12] M.A. Henning, A survey of selected recently results on total domination in graphs, Discrete Math. 309 (2009) 32-63, doi: 10.1016/j.disc.2007.12.044.
  • [13] X. Hou, A characterization of (2γ,γₚ)-trees, Discrete Math. 308 (2008) 3420-3426, doi: 10.1016/j.disc.2007.06.034.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1504
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.