THE EDGE C_4 GRAPH OF SOME GRAPH CLASSES

MANJU K. MENON AND A. VIJAYAKUMAR

Department of Mathematics
Cochin University of Science and Technology
Cochin-682022, India

e-mail: manjumenonk@gmail.com
e-mail: vijay@cusat.ac.in

Abstract

The edge C_4 graph of a graph G, $E_4(G)$ is a graph whose vertices are the edges of G and two vertices in $E_4(G)$ are adjacent if the corresponding edges in G are either incident or are opposite edges of some C_4. In this paper, we show that there exist infinitely many pairs of non isomorphic graphs whose edge C_4 graphs are isomorphic. We study the relationship between the diameter, radius and domination number of G and those of $E_4(G)$. It is shown that for any graph G without isolated vertices, there exists a super graph H such that $C(H) = G$ and $C(E_4(H)) = E_4(G)$. Also we give forbidden subgraph characterizations for $E_4(G)$ being a threshold graph, block graph, geodetic graph and weakly geodetic graph.

Keywords: edge C_4 graph, threshold graph, block graph, geodetic graph, weakly geodetic graph.

2010 Mathematics Subject Classification: 05C99.

1. Introduction

We consider the graph operator $E_4(G)$, whose vertices are the edges of G and two vertices in $E_4(G)$ are adjacent if the corresponding edges in G are either incident or are opposite edges of some C_4. This graph class is also known by the name edge graph in [11]. In $E_4(G)$ any two vertices are adjacent if the union of the corresponding edges in G induce any one of the graphs P_3, C_3, C_4, $K_4 - \{e\}$, K_4. If $a_1 - a_2$ is an edge in G, the corresponding
vertex in \(E_4(G) \) is denoted by \(a_1a_2 \). In [9], we obtained characterizations for \(E_4(G) \) being connected, complete, bipartite etc and also some dynamical behaviour of \(E_4(G) \) are studied. It was also proved that \(E_4(G) \) has no forbidden subgraphs.

For a vertex \(v \in V(G) \), \(N(v) \) denotes the set of all vertices in \(G \) which are adjacent to \(v \) and \(N[v] = N(v) \cup \{v\} \). A vertex \(x \) dominates a vertex \(y \) if \(N(y) \subseteq N[x] \). If \(x \) dominates \(y \) or \(y \) dominates \(x \), then \(x \) and \(y \) are comparable. Otherwise, they are incomparable. The Dilworth number of a graph \(G \), \(\text{dilw}(G) \) is the largest number of pairwise incomparable vertices of \(G \). A vertex \(v \) is a universal vertex if it is adjacent to all the other vertices in \(G \). A subset \(S \) of \(V \) is a dominating set if each vertex of \(G \) that is not in \(S \) is adjacent to at least one vertex of \(S \). If \(S \) is a dominating set then \(N[S] = V \). A dominating set of minimum cardinality is called a minimum dominating set, its cardinality is called the domination number of \(G \) and it is denoted by \(\gamma(G) \). Many types of domination and its characteristics are discussed in [5]. In [4], it is observed that for graphs \(G \) without isolated vertices, \(\gamma(G) \leq \text{dilw}(G) \).

All the graphs considered here are finite, undirected and simple. We denote by \(P_n \) (respectively \(C_n \)), a path (respectively cycle) on \(n \) vertices. The graph obtained by deleting any edge \(e \) of \(K_n \) is denoted by \(K_n - \{e\} \). The join of two graphs \(G = (V_1, E_1) \) and \(H = (V_2, E_2) \) is denoted by \(G \vee H \) and has \(V(G \vee H) = V_1 \cup V_2 \) and \(E(G \vee H) = E_1 \cup E_2 \cup \{ (u, v) : u \in V_1 \text{ and } v \in V_2 \} \). A ‘bow’ is \(K_1 \vee 2K_2 \). The graph obtained by attaching a pendant vertex to any vertex of \(C_n \), is called an ‘\(n \)-pan’ and a ‘paw’ is a 3-pan. The graph in Figure 1 is called a ‘moth’.

![Moth Graph](image)

A graph \(G \) is \(H \)-free if \(G \) does not contain \(H \) as an induced subgraph. A graph \(H \) is a forbidden subgraph for a property \(P \), if any graph \(G \) which satisfies the property \(P \) cannot have \(H \) as an induced subgraph. The distance between any two vertices \(u \) and \(v \) of a connected graph \(G \), \(d_G(u, v) \) is the
length of a shortest path joining them. The eccentricity of a vertex \(v \in V(G) \) is \(e(v) = \max\{d(u,v) : u \in V(G)\} \). The radius and diameter of \(G \) are respectively \(\text{rad}(G) = \min\{e(v) : v \in V(G)\} \), \(\text{diam}(G) = \max\{e(v) : v \in V(G)\} \). A vertex \(v \) is called a central vertex of \(G \) if \(e(v) = \text{rad}(G) \). The center, \(C(G) \) of a connected graph \(G \) is the subgraph of \(G \) induced by its central vertices. The girth of \(G \), \(g(G) \) is the length of a shortest cycle in \(G \). A clique in \(G \) is a complete subgraph of \(G \). For all basic concepts and notations not mentioned in this paper we refer [13].

The line graph \(L(G) \) of a graph \(G \) is a graph that has a vertex for every edge of \(G \), and two vertices of \(L(G) \) are adjacent if and only if they correspond to two edges of \(G \) with a common end vertex. In [8], it is shown that for any graph \(G \) without isolated vertices, there is a graph \(H \) such that \(C(H) = G \) and \(C(L(H)) = L(G) \). It is further proved that \(\text{diam}(L(G)) \leq \text{diam}(G) + 1 \) and \(\text{rad}(L(G)) \leq \text{rad}(G) + 1 \).

In [1], several graph classes and their forbidden subgraph characterizations for many properties are discussed in detail. We consider the graph classes — threshold graphs, cographs, block graphs, geodetic graphs and weakly geodetic graphs with regard to \(E_4(G) \).

Threshold graphs were introduced by Chvátal and Hammer in [2]. It is known that a graph \(G \) is a threshold graph if and only if \(\text{dilw}(G) = 1 \) and that \(G \) is \(\{2K_2, C_4, P_4\} \)-free graph [2, 5].

In [7], it is proved that a connected graph \(G \) is a block graph if and only if every maximal 2-connected subgraph (block) is complete. A cycle \(C \) of \(G \) is a b-cycle of \(G \) if \(C \) is not contained in a clique of \(G \). The bulge of \(G \), \(b(G) \) is the minimum length of a b-cycle in \(G \) if \(G \) contains a b-cycle and is \(\infty \) otherwise. Also, \(G \) is a block graph if and only if \(b(G) = \infty \) [6, 7].

A graph \(G \) is a geodetic graph [10] if any two vertices of \(G \) are joined by a unique shortest path and \(G \) is weakly geodetic if for every pair of vertices of distance two, there is a unique common neighbour [7]. A graph \(G \) is weakly geodetic if and only if \(b(G) \geq 5 \) [6, 7]. It is known that block graphs \(\subseteq \) geodetic graphs \(\subseteq \) weakly geodetic graphs [1].

\(P_4 \)-free graphs are called cographs [3]. The domination number of cographs is at most two [12].

It is well known that \(K_{1,3} \) and \(K_3 \) are the only non isomorphic graphs with isomorphic line graphs. Even though \(L(G) \subseteq E_4(G) \), it is proved in this paper that there exist infinitely many pairs of non isomorphic graphs with isomorphic edge \(C_4 \) graphs. We study relations between \(\gamma(G) \) and \(\gamma(E_4(G)) \), \(\text{diam}(G) \) and \(\text{diam}(E_4(G)) \), and \(\text{rad}(G) \) and \(\text{rad}(E_4(G)) \). We prove that for
any graph \(G \) without isolated vertices, it is possible to construct a super graph \(H \) such that \(C(H) = G \) and \(C(E_k(H)) = E_k(G) \). We also obtain forbidden subgraph characterizations for \(E_k(G) \) being threshold graph, block graph, geodetic graph and weakly geodetic graph.

2. Some Properties of \(E_k(G) \)

Theorem 1. There exist infinitely many pairs of non isomorphic graphs whose edge \(C_k \) graphs are isomorphic.

Proof. Let \(G = K_{1,n} \). If \(n = 2k - 1 \), then take \(H = K_2 \lor (k - 1)K_1 \) and if \(n = 2k \), then take \(H = 2K_1 \lor kK_1 \). Clearly \(G \) and \(H \) are non isomorphic graphs. But \(E_k(G) = E_k(H) = K_n \).

Theorem 2. For a connected graph \(G \), \(\text{diam}(G) - 1 \leq \text{diam}(E_k(G)) \leq \text{diam}(G) + 1 \) and \(\text{rad}(G) - 1 \leq \text{rad}(E_k(G)) \leq \text{rad}(G) + 1 \).

Proof. By the definition of \(E_k(G) \) and \(L(G) \), \(\text{diam}(E_k(G)) \leq \text{diam}(L(G)) \) and \(\text{rad}(E_k(G)) \leq \text{rad}(L(G)) \). But, \(\text{diam}(L(G)) \leq \text{diam}(G) + 1 \) and \(\text{rad}(L(G)) \leq \text{rad}(G) + 1 \). Thus \(\text{diam}(E_k(G)) \leq \text{diam}(G) + 1 \) and \(\text{rad}(E_k(G)) \leq \text{rad}(G) + 1 \).

Next let \(\text{diam}(G) = k \). We want to prove that \(\text{diam}(E_k(G)) \geq k - 1 \). On the contrary, assume that \(\text{diam}(E_k(G)) < k - 1 \). Let \(u \) and \(v \) be any two vertices in \(G \) and let \(u - u', v - v' \) be any two edges incident with \(u \) and \(v \) respectively. But \(d_{E_k(G)}(uu', vv') < k - 1 \). So \(d_G(u, v) \leq d_{E_k(G)}(uu', vv') + 1 < k \), which is a contradiction to the fact that \(\text{diam}(G) = k \).

Finally, let \(\text{rad}(G) = k \). It is required to prove that \(\text{rad}(E_k(G)) \geq k - 1 \). On the contrary, suppose that \(\text{rad}(E_k(G)) < k - 1 \). Then there exists a vertex \(uu' \) in \(E_k(G) \) such that \(e(uu') < k - 1 \). Consider the vertex \(u \) in \(G \). Let \(v \) be any vertex in \(G \) and \(vv' \) be any edge incident with \(v \). Then \(d_G(u, v) \leq d_{E_k(G)}(uu', vv') + 1 < k \), and hence \(e(u) < k \), which is a contradiction to the fact that \(\text{rad}(G) = k \).

Note 1. The bounds in Theorem 2 are strict.

If \(G \) is a bow, then \(\text{diam}(G) = 2 \), \(\text{diam}(E_k(G)) = 3 \), \(\text{rad}(G) = 1 \) and \(\text{rad}(E_k(G)) = 2 \).

If \(G \) is \(C_4 \), then \(\text{diam}(G) = 2 \), \(\text{diam}(E_k(G)) = 1 \), \(\text{rad}(G) = 2 \) and \(\text{rad}(E_k(G)) = 1 \).
Theorem 3. For any graph G without isolated vertices, there exists a super graph H such that $C(H) = G$ and $C(E_4(H)) = E_4(G)$.

Proof. Consider $G \setminus 2K_2$. Let the K_2’s be $a - a'$ and $b - b'$. Attach $a'' - a'''$ to $a - a'$ such that a is adjacent to a''' and a' is adjacent to a''. Similarly attach $b'' - b'''$ to $b - b'$ such that b is adjacent to b''' and b' is adjacent to b''. The graph so obtained is H.

Claim 1. $C(H) = G$.

We prove that among the vertices in H, those vertices which are in G also have minimum eccentricity.

$e(u) = 2$, if $u \in V(G)$.
$e(u) = 3$, if $u \in \{a, a', b, b'\}$.
$e(u) = 4$, if $u \in \{a'', a''', b'', b'''\}$.

Hence Claim 1 is proved.

Claim 2. $C(E_4(H)) = E_4(G)$.

$e(x) = 2$, if $x \in \{u_iu_j/u_i$ is adjacent to $u_j \in G, i, j = 1, 2, \ldots, m, i \neq j$.
$e(x) = 3$, if $x \in \{aa', bb', au_i, a'u_i, bu_i, b'u_i, i = 1, 2, \ldots, m$.
$e(x) = 4$, if $x \in \{a''a'', aa''', b''b'', bb''', a''a'''', b''b'''\}$.

Illustration: Let $G = P_3$. Then H:

\[
\begin{align*}
 &
\end{align*}
\]

3. A Bound on the Domination Number of $E_4(G)$

Theorem 4. For a connected graph G, $\gamma(G) \leq 2\gamma(E_4(G))$. Given any two integers a and b such that $a \leq 2b$, there exists a graph G such that $\gamma(G) = a$ and $\gamma(E_4(G)) = b$.

Proof. Let $\gamma(E_4(G)) = b$ and let $\{e_1 = v_1v'_1, e_2 = v_2v'_2, \ldots, e_b = v bv'_b\}$ dominate $E_4(G)$. Consider $S = \{v_1, v'_1, v_2, v'_2, \ldots, v_b, v'_b\}$. Then $S \subseteq V(G)$. Let w be any vertex in $V(G)$. Since G is a connected graph, w must be the end vertex of an edge $w - w'$. But the vertex ww' in $E_4(G)$ is dominated and hence is adjacent to at least one of the b vertices. Let e_i be adjacent to ww' in $E_4(G)$. Then in G, either e_i is incident with $w - w'$ or e_i and $w - w'$ are the opposite edges of some C_4. In both the cases, w is dominated by v_i or v'_i. Thus S is a dominating set of G and hence $\gamma(G) \leq 2\gamma(E_4(G))$.

Construction

| Case 1 | Consider $P_{2b} = \{v_1, v_2, \ldots, v_{2b}\}$. Attach a pendant vertex to each of v_{2i-1}, $i = 1, 2, \ldots, b$. Then to each of the v_{2i}'s, $i = 1, 2, \ldots, a - b$, attach a pendant vertex. | $a = 4; b = 3$ |
| Case 2 | Consider $K_{1,a}$. Replace a pendant vertex of $K_{1,a}$ by $K_1 \cup (b - a + 1)K_2$. To all the other pendant vertices of $K_{1,a}$, attach a pendant vertex. | $a = 5; b = 6$ |
4. Some Theorems on Graph Classes

Theorem 5 [9]. For a connected graph G, $E_4(G)$ is complete if and only if G is a complete multipartite graph.

Theorem 6. Let G be a connected graph such that $E_4(G)$ is a threshold graph. Then $\gamma(G) \leq 2$.

Proof. We know that $E_4(G)$ is a threshold graph if and only if $dilw(E_4(G)) = 1$. Also $dilw(E_4(G)) \geq \gamma(E_4(G))$. Then the theorem follows from Theorem 4. \hfill \blacksquare

The graph obtained from K_4 by attaching two pendant vertices to the same vertex of K_4 is denoted by H.

Theorem 7. If G is a threshold graph then $E_4(G)$ is a threshold graph if and only if G is $\{\text{moth, } H\}$-free.

Proof. Let G be a threshold graph. If G contains a moth graph or H as an induced sub graph, then $E_4(G)$ contains a $2K_2$ and hence it cannot be threshold.

Conversely, suppose that G is a $\{\text{moth, } H\}$-free threshold graph. Since G is threshold, $dilw(G) = 1$ and hence $\gamma(G) = 1$. So G must have a universal vertex u.

If at most two vertices in $N(u)$ are of degree greater than one, then $E_4(G)$ cannot contain an induced $2K_2$, C_4 or P_4.

Now let k, $k \geq 3$ vertices in $N(u)$ are of degree greater than one.

Claim: There exist three vertices u_1, u_2, u_3 such that the vertex u_2 is adjacent to u_1 and u_3.

If $k = 3$, this claim holds true. If $k > 3$, let u_1, u_2, u_3 and u_4 be four vertices of degree greater than one in $N(u)$ such that u_1 is adjacent to u_2 and u_3 is adjacent to u_4. Since G is threshold, it can not contain an induced $2K_2$ and hence u_3 or u_4 must be adjacent to u_1 or u_2. Let u_3 be adjacent to u_1. Then u_2, u_1, u_3, u_4 forms an induced P_4 which is not possible since G is threshold. In this case, if u_4 is adjacent to u_2, then G contains an induced C_4 which is again not possible. Hence the claim.

Further if u_1 and u_3 are adjacent, the vertex u can have at most one more neighbour since G is H-free. In this case also $E_4(G)$ is threshold since it is $\{2K_2, C_4, P_4\}$-free. On the other hand if u_1 and u_3 are not adjacent,
then since G is moth-free, the vertex u can have at most one more neighbour. In this case also $E_4(G)$ is threshold.

Remark. Let G be a connected graph such that $E_4(G)$ is a cograph. Then $\gamma(G) \leq 4$, which follows from Theorem 4 and the fact that the domination number of cographs is at most two.

Theorem 8. Let G be a connected graph. Then

1. $E_4(G)$ is a weakly geodetic graph if and only if G is $\{\text{paw, 4-pan}\}$-free.
2. $E_4(G)$ is a geodetic graph if and only if G is $\{C_{2n} : n > 2\} \cup \{4$-pan$\} \cup \{2n - 1 : n > 1\}$-free.
3. $E_4(G)$ is a block graph if and only if G is $\{\text{paw, 4-pan}\} \cup \{C_n : n \geq 5\}$-free.

Proof. 1. If G contains a paw in which $C_3 = (u_1, u_2, u_3)$ and a is a pendant vertex attached to u_1, then in $E_4(G)$, $d(a u_1, u_2 u_3) = 2$, but they have two common neighbours $u_1 u_2$ and $u_1 u_3$. Similarly if G contains a 4-pan in which $C_4 = (u_1, u_2, u_3, u_4)$ and a is a pendant vertex attached to u_1, then in $E_4(G)$, $d(a u_1, u_3 u_4) = 2$, but they have two neighbours $u_1 u_2$ and $u_1 u_4$.

Conversely, suppose that G is a $\{\text{paw, 4-pan}\}$-free graph. If G is an acyclic graph, there exists a unique shortest path joining any two vertices in $E_4(G)$. Thus $E_4(G)$ is weakly geodetic.

Next suppose that G contains cycles.

If $g(G) = 3$ then G contains a $C_3 = (u_1, u_2, u_3)$.

Claim. G is a cograph.

Suppose that G contains an induced $P_4 = (v_1, v_2, v_3, v_4)$. Let $u_1 \neq v_1$. Consider a shortest path $(u_1, a_1, a_2, \ldots, a_k, v_1)$ joining u_1 and v_1. Since G is paw free, a_1 must be adjacent to at least one more u_i, $i = 2, 3$. Proceeding like this, v_1 and then v_2 must be adjacent to at least two u_i’s. This implies that v_1 and v_2 must have a common neighbour among the u_i’s. Let it be u_1. Then (v_1, u_1, v_2) form a C_3. Since G is paw-free, v_3 must be adjacent to at least one of v_1 and u_1. But, since (v_1, v_2, v_3, v_4) is an induced P_4, v_3 must be adjacent to u_1. Then (v_1, u_1, v_3) will form a C_3 in G. Again since G is paw-free, v_4 must be adjacent to u_1. Now, consider (v_1, u_1, v_2) with the edge $u_1 - v_4$. Since G is paw-free, v_4 must be adjacent to v_1 or v_2, which is a contradiction.
If \(g(G) = 4 \), then \(G \) contains a \(C_4 = (u_1, u_2, u_3, u_4) \). If \(G = C_4 \), then \(E_4(G) = K_4 \). If there exists a vertex \(v_1 \) in \(G \) which is adjacent to \(u_1 \), \(v_1 \) must be adjacent to \(u_3 \) also since \(G \) is 4-pan-free. Similarly if there exists a vertex \(v_2 \) which is adjacent to \(u_2 \), \(v_2 \) must be adjacent to \(u_4 \). If there exists a vertex \(v_1' \) which is adjacent to \(v_1 \), it must be adjacent to both \(u_2 \) and \(u_4 \). Hence \(G \) is a complete bipartite graph. Since \(g(G) = 4 \), \(G \) is paw-free. Again by Theorem 5, \(E_4(G) \) is complete, and hence \(G \) is a weakly geodetic graph.

Finally, Let \(g(G) = k \), \(k > 4 \). Let \((u_1, u_2, u_3, \ldots, u_k) \) be a \(C_k \) in \(G \). Then \(E_4(G) \) also contains a \(C_k \). This \(C_k \) is not a part of any clique in \(E_4(G) \) and hence \(b(E_4(G)) \leq k \). Since \(G \) does not contain any \(C_4 \), two vertices in \(E_4(G) \) are adjacent if and only if the corresponding edges in \(G \) are adjacent. Thus \(E_4(G) \) cannot contain a \(b \)-cycle of length less than \(k \) and so \(b(E_4(G)) = k \) where \(k > 4 \). We know that a graph \(G \) is weakly geodetic if and only if \(b(G) \geq 5 \). Thus \(E_4(G) \) is a weakly geodetic graph.

2. Let \(E_4(G) \) be a geodetic graph. If \(G \) contains a 4-pan, there exists more than one shortest path joining two vertices in \(E_4(G) \) as proved earlier. If \(G \) contains a \(C_{2n} = (u_1, u_2, \ldots, u_{2n}) \), then \(u_1u_2 \) and \(u_{n+1}u_{n+2} \) in \(E_4(G) \) are connected by more than one shortest path and hence \(E_4(G) \) is not geodetic. If \(G \) contains a \((2n-1)\)-pan in which \(C_{2n-1} = (u_1, u_2, \ldots, u_{2n-1}) \) and \(a \) is a pendant vertex attached to \(u_1 \), then \(au_1 \) and \(u_nu_{n+1} \) in \(E_4(G) \) are connected by more than one shortest path and hence \(E_4(G) \) is not geodetic.

Conversely, assume that \(G \) is \(\{4\text{-pan}, C_{2n}, (2n-1)\text{-pan}\} \)-free. If \(G \) is an acyclic graph there exists a unique shortest path joining any two vertices in \(E_4(G) \) and hence is geodetic. So consider the graphs \(G \) containing cycles.

Let \(g(G) = 3 \). Since \(G \) is paw-free, \(E_4(G) \) is complete and hence is geodetic. If \(g(G) = 4 \), \(E_4(G) \) is complete since \(G \) is 4-pan-free and thus geodetic. If \(g(G) = 2n - 1, n > 2 \), then \(G \) contains a \(C_{2n-1} = (u_1, u_2, \ldots, u_{2n-1}) \). If \(G = C_{2n-1} \), then \(E_4(G) = C_{2n-1} \) and hence geodetic. If \(a \) is a vertex attached to \(u_1 \), since \(G \) is \((2n-1)\)-pan-free, \(a \) must be adjacent to at least one more \(u_i \). But this is impossible since \(g(G) = 2n - 1 \). Since \(G \) is \(C_{2n}\)-free, \(g(G) \neq 2n, n > 2 \). Hence in all the cases, it follows that \(E_4(G) \) is geodetic.

3. Let \(E_3(G) \) be a block graph. If \(G \) contains a paw in which \(C_3 = u_1, u_2, u_3 \) and \(a \) is the pendant vertex adjacent to \(u_1 \), then \(E_4(G) \) contains a \(C_4 = (au_1, u_1u_2, u_2u_3, u_3u_1) \) which is not a part of any clique. Thus \(b(E_4(G)) \leq 4 \). Similarly if \(G \) contains a 4-pan, in which \(C_4 =
$\{u_1, u_2, u_3, u_4\}$ and a is a pendant vertex adjacent to u_1, then $E_4(G)$ contains a $C_4 = (au_1, u_1u_2, u_3u_4, u_4u_1)$ which is not a part of any clique and hence $b(E_4(G)) \leq 4$. If G contains a C_n, $n > 4$, then $E_4(G)$ also contains a C_n, $n > 4$. This C_n forms a b-cycle and hence $b(E_4(G)) \leq n$ and hence $E_4(G)$ is not a block graph.

Conversely, suppose that G is $\{\text{paw, 4-pan}\} \cup \{C_n : n > 4\}$-free. If G is an acyclic graph, then $E_4(G)$ cannot contain a b-cycle and hence is a block graph. Now, consider the graphs G containing cycles. Since G is $\{C_n : n \geq 5\}$-free, $g(G) = 3$ or 4. But since G is $\{\text{paw, 4-pan}\}$-free, $E_4(G)$ is complete as proved earlier and thus is a block graph.

Acknowledgement

The authors thank the referees for their suggestions for the improvement of this paper.

References

