ArticleOriginal scientific text
Title
k-independence stable graphs upon edge removal
Authors 1, 2, 3
Affiliations
- LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria
- Department of Mathematics, East Tennessee State University, Johnson City, TN 37614 USA
- Lehrstuhl II für Mathematik, RWTH Aachen University, Templergraben 55, D-52056 Aachen, Germany
Abstract
Let k be a positive integer and G = (V(G),E(G)) a graph. A subset S of V(G) is a k-independent set of G if the subgraph induced by the vertices of S has maximum degree at most k-1. The maximum cardinality of a k-independent set of G is the k-independence number βₖ(G). A graph G is called β¯ₖ-stable if βₖ(G-e) = βₖ(G) for every edge e of E(G). First we give a necessary and sufficient condition for β¯ₖ-stable graphs. Then we establish four equivalent conditions for β¯ₖ-stable trees.
Keywords
k-independence stable graphs, k-independence
Bibliography
- M. Blidia, M. Chellali and L. Volkmann, Some bounds on the p-domination number in trees, Discrete Math. 306 (2006) 2031-2037, doi: 10.1016/j.disc.2006.04.010.
- J.F. Fink and M.S. Jacobson, n-domination in graphs, in: Graph Theory with Applications to Algorithms and Computer (John Wiley and sons, New York, 1985) 283-300.
- G. Gunther, B. Hartnell and D.F. Rall, Graphs whose vertex independence number is unaffected by single edge addition or deletion, Discrete Appl. Math. 46 (1993) 167-172, doi: 10.1016/0166-218X(93)90026-K.