ArticleOriginal scientific text

Title

On the (2,2)-domination number of trees

Authors 1, 1, 1

Affiliations

  1. Department of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, China

Abstract

Let γ(G) and γ2,2(G) denote the domination number and (2,2)-domination number of a graph G, respectively. In this paper, for any nontrivial tree T, we show that 2(γ(T)+1)3γ2,2(T)2γ(T). Moreover, we characterize all the trees achieving the equalities.

Keywords

domination number, total domination number, (2,2)-domination number

Bibliography

  1. T.J. Bean, M.A. Henning and H.C. Swart, On the integrity of distance domination in graphs, Australas. J. Combin. 10 (1994) 29-43.
  2. G. Chartrant and L. Lesniak, Graphs & Digraphs (third ed., Chapman & Hall, London, 1996).
  3. M. Fischermann and L. Volkmann, A remark on a conjecture for the (k,p)-domination number, Utilitas Math. 67 (2005) 223-227.
  4. M.A. Henning, Trees with large total domination number, Utilitas Math. 60 (2001) 99-106.
  5. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (New York, Marcel Deliker, 1998).
  6. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (New York, Marcel Deliker, 1998).
  7. T. Korneffel, D. Meierling and L. Volkmann, A remark on the (2,2)-domination number Discuss. Math. Graph Theory 28 (2008) 361-366, doi: 10.7151/dmgt.1411.
Pages:
185-199
Main language of publication
English
Received
2008-09-19
Accepted
2009-06-04
Published
2010
Exact and natural sciences