A cyclic colouring of a graph G embedded in a surface is a vertex colouring of G in which any two distinct vertices sharing a face receive distinct colours. The cyclic chromatic number $χ_c(G)$ of G is the smallest number of colours in a cyclic colouring of G. Plummer and Toft in 1987 conjectured that $χ_c(G) ≤ Δ* + 2$ for any 3-connected plane graph G with maximum face degree Δ*. It is known that the conjecture holds true for Δ* ≤ 4 and Δ* ≥ 18. The validity of the conjecture is proved in the paper for some special classes of planar graphs.
Institute of Mathematics, Faculty of Science, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia
Bibliografia
[1] K. Ando, H. Enomoto and A. Saito, Contractible edges in 3-connected graphs, J. Combin. Theory (B) 42 (1987) 87-93, doi: 10.1016/0095-8956(87)90065-7.
[2] O.V. Borodin, Solution of Ringel's problem on vertex-face coloring of plane graphs and coloring of 1-planar graphs (Russian), Met. Diskr. Anal. 41 (1984) 12-26.
[3] H. Enomoto and M. Hornák, A general upper bound for the cyclic chromatic number of 3-connected plane graphs, J. Graph Theory 62 (2009) 1-25, doi: 10.1002/jgt.20383.
[4] H. Enomoto, M. Hornák and S. Jendrol', Cyclic chromatic number of 3-connected plane graphs, SIAM J. Discrete Math. 14 (2001) 121-137, doi: 10.1137/S0895480198346150.
[5] M. Hornák and S. Jendrol', On a conjecture by Plummer and Toft, J. Graph Theory 30 (1999) 177-189, doi: 10.1002/(SICI)1097-0118(199903)30:3<177::AID-JGT3>3.0.CO;2-K
[6] M. Hornák and J. Zlámalová, Another step towards proving a conjecture by Plummer and Toft, Discrete Math. 310 (2010) 442-452, doi: 10.1016/j.disc.2009.03.016.
[7] A. Morita, Cyclic chromatic number of 3-connected plane graphs (Japanese, M.S. Thesis), Keio University, Yokohama 1998.
[8] M.D. Plummer and B. Toft, Cyclic coloration of 3-polytopes, J. Graph Theory 11 (1987) 507-515, doi: 10.1002/jgt.3190110407.
[9] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168, doi: 10.2307/2371086.