PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 30 | 1 | 75-83
Tytuł artykułu

Further results on radial graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In a graph G, the distance d(u,v) between a pair of vertices u and v is the length of a shortest path joining them. The eccentricity e(u) of a vertex u is the distance to a vertex farthest from u. The minimum eccentricity is called the radius of the graph and the maximum eccentricity is called the diameter of the graph. The radial graph R(G) based on G has the vertex set as in G, two vertices u and v are adjacent in R(G) if the distance between them in G is equal to the radius of G. If G is disconnected, then two vertices are adjacent in R(G) if they belong to different components. The main objective of this paper is to characterize graphs G with specified radius for its radial graph.
Słowa kluczowe
Kategorie tematyczne
Wydawca
Rocznik
Tom
30
Numer
1
Strony
75-83
Opis fizyczny
Daty
wydano
2010
Twórcy
  • Center for Research and Post Graduate Studies in Mathematics, Ayya Nadar Janaki Ammal College, Sivakasi - 626 124, Tamil Nadu, India
autor
  • Department of Mathematics, The Madura College, Madurai - 625 011, Tamil Nadu, India
Bibliografia
  • [1] J. Akiyama, K. Ando and D. Avis, Eccentric graphs, Discrete Math. 16 (1976) 187-195.
  • [2] R. Aravamuthan and B. Rajendran, Graph equations involving antipodal graphs, Presented at the seminar on Combinatorics and applications held at ISI (Culcutta during 14-17 December 1982) 40-43.
  • [3] R. Aravamuthan and B. Rajendran, On antipodal graphs, Discrete Math. 49 (1984) 193-195, doi: 10.1016/0012-365X(84)90117-1.
  • [4] F. Buckley and F. Harary, Distance in Graphs (Addison-Wesley Reading, 1990).
  • [5] G. Chartrand, W. Gu, M. Schultz and S.J. Winters, Eccentric graphs, Networks 34 (1999) 115-121, doi: 10.1002/(SICI)1097-0037(199909)34:2<115::AID-NET4>3.0.CO;2-K
  • [6] KM. Kathiresan and G. Marimuthu, A study on radial graphs, Ars Combin. (to appear).
  • [7] KM. Kathiresan, Subdivision of ladders are graceful, Indian J. Pure Appl. Math. 23 (1992) 21-23.
  • [8] R.R. Singleton, There is no irregular Moore graph, Amer. Math. Monthly 7 (1968) 42-43, doi: 10.2307/2315106.
  • [9] D.B. West, Introduction to Graph Theory (Prentice-Hall of India, New Delhi, 2003).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1477
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.