ArticleOriginal scientific text

Title

Fractional global domination in graphs

Authors 1, 1, 2

Affiliations

  1. Core Group Research Facility (CGRF), National Centre for Advanced Research in Discrete Mathematics, (n-CARDMATH), Kalasalingam University, Anand Nagar, Krishnankoil-626 190, India
  2. Department of Mathematics, The Madura College, Madurai-625 011, India

Abstract

Let G = (V,E) be a graph. A function g:V → [0,1] is called a global dominating function (GDF) of G, if for every v ∈ V, g(N[v])=uN[v]g(u)1 and g(N(v)¯)=uN(v)g(u)1. A GDF g of a graph G is called minimal (MGDF) if for all functions f:V → [0,1] such that f ≤ g and f(v) ≠ g(v) for at least one v ∈ V, f is not a GDF. The fractional global domination number γfg(G) is defined as follows: γfg(G) = min{|g|:g is an MGDF of G } where |g|=vVg(v). In this paper we initiate a study of this parameter.

Keywords

domination, global domination, dominating function, global dominating function, fractional global domination number

Bibliography

  1. S. Arumugam and R. Kala, A note on global domination in graphs, Ars Combin. 93 (2009) 175-180.
  2. S. Arumugam and K. Rejikumar, Basic minimal dominating functions, Utilitas Mathematica 77 (2008) 235-247.
  3. G. Chartrand and L. Lesniak, Graphs & Digraphs (Fourth Edition, Chapman & Hall/CRC, 2005).
  4. E.J. Cockayne, G. MacGillivray and C.M. Mynhardt, Convexity of minimal dominating funcitons of trees-II, Discrete Math. 125 (1994) 137-146, doi: 10.1016/0012-365X(94)90154-6.
  5. E.J. Cockayne, C.M. Mynhardt and B. Yu, Universal minimal total dominating functions in graphs, Networks 24 (1994) 83-90, doi: 10.1002/net.3230240205.
  6. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker, Inc., 1998).
  7. T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics (Marcel Dekker, Inc., 1998).
  8. S.M. Hedetniemi, S.T. Hedetniemi and T.V. Wimer, Linear time resource allocation algorithms for trees, Technical report URI -014, Department of Mathematics, Clemson University (1987).
  9. E. Sampathkumar, The global domination number of a graph, J. Math. Phys. Sci. 23 (1989) 377-385.
  10. E.R. Scheinerman and D.H. Ullman, Fractional Graph Theory: A Rational Approch to the Theory of Graphs (John Wiley & Sons, New York, 1997).
Pages:
33-44
Main language of publication
English
Received
2008-09-19
Accepted
2009-01-12
Published
2010
Exact and natural sciences