PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Discussiones Mathematicae Graph Theory

2009 | 29 | 3 | 545-561
Tytuł artykułu

### The set chromatic number of a graph

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For a nontrivial connected graph G, let c: V(G)→ N be a vertex coloring of G where adjacent vertices may be colored the same. For a vertex v of G, the neighborhood color set NC(v) is the set of colors of the neighbors of v. The coloring c is called a set coloring if NC(u) ≠ NC(v) for every pair u,v of adjacent vertices of G. The minimum number of colors required of such a coloring is called the set chromatic number χₛ(G) of G. The set chromatic numbers of some well-known classes of graphs are determined and several bounds are established for the set chromatic number of a graph in terms of other graphical parameters.
Słowa kluczowe
EN
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
545-561
Opis fizyczny
Daty
wydano
2009
otrzymano
2008-04-04
poprawiono
2008-10-09
zaakceptowano
2008-10-13
Twórcy
autor
• Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA
autor
• Mathematics Department, University of Wisconsin - La Crosse, La Crosse, WI 54601, USA
autor
• Department of Applied Mathematics, Naval Postgradute School, Monterey, CA 93943, USA
autor
• Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008, USA
Bibliografia
• [1] P.N. Balister, E. Gyori, J. Lehel and R.H. Schelp, Adjacent vertex distinguishing edge-colorings, SIAM J. Discrete Math. 21 (2007) 237-250, doi: 10.1137/S0895480102414107.
• [2] A.C. Burris and R.H. Schelp, Vertex-distinguishing proper edge colorings, J. Graph Theory 26 (1997) 73-82, doi: 10.1002/(SICI)1097-0118(199710)26:2<73::AID-JGT2>3.0.CO;2-C
• [3] G. Chartrand and P. Zhang, Chromatic Graph Theory (Chapman & Hall/CRC Press, Boca Raton, 2008), doi: 10.1201/9781584888017.
• [4] F. Harary and M. Plantholt, The point-distinguishing chromatic index, Graphs and Applications (Wiley, New York, 1985) 147-162.
Typ dokumentu
Bibliografia
Identyfikatory