PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 29 | 2 | 361-376
Tytuł artykułu

Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We consider a list cost coloring of vertices and edges in the model of vertex, edge, total and pseudototal coloring of graphs. We use a dynamic programming approach to derive polynomial-time algorithms for solving the above problems for trees. Then we generalize this approach to arbitrary graphs with bounded cyclomatic numbers and to their multicolorings.
Wydawca
Rocznik
Tom
29
Numer
2
Strony
361-376
Opis fizyczny
Daty
wydano
2009
otrzymano
2007-11-30
poprawiono
2009-02-26
zaakceptowano
2009-02-26
Twórcy
  • Gdańsk University of Technology, Department of Algorithms and System Modeling, Narutowicza 11/12, 80-952 Gdańsk, Poland
autor
  • Gdańsk University of Technology, Department of Algorithms and System Modeling, Narutowicza 11/12, 80-952 Gdańsk, Poland
Bibliografia
  • [1] K. Giaro and M. Kubale, Edge-chromatic sum of trees and bounded cyclicity graphs, Inf. Process. Lett. 75 (2000) 65-69, doi: 10.1016/S0020-0190(00)00072-7.
  • [2] K. Giaro, M. Kubale and P. Obszarski, A graph coloring approach to scheduling multiprocessor tasks on dedicated machines with availability constraints, Disc. Appl. Math., (to appear).
  • [3] S. Isobe, X. Zhou and T. Nishizeki, Cost total colorings of trees, IEICE Trans. Inf. and Syst. E-87 (2004) 337-342.
  • [4] J. Jansen, Approximation results for optimum cost chromatic partition problem, J. Alghoritms 34 (2000) 54-89, doi: 10.1006/jagm.1999.1022.
  • [5] M. Kao, T. Lam, W. Sung and H. Ting, All-cavity maximum matchings, Proc. ISAAC'97, LNCS 1350 (1997) 364-373.
  • [6] L. Kroon, A. Sen. H. Deng and A. Roy, The optimal cost chromatic partition problem for trees and interval graphs, Proc. WGTCCS'96, LNCS 1197 (1997) 279-292.
  • [7] D. Marx, The complexity of tree multicolorings, Proc. MFCS'02, LNCS 2420 (2002) 532-542.
  • [8] D. Marx, List edge muticoloring in graphs with few cycles, Inf. Proc. Lett. 89 (2004) 85-90, doi: 10.1016/j.ipl.2003.09.016.
  • [9] S. Micali and V. Vazirani, An $O(mn^{1/2})$ algorithm for finding maximum matching in general graphs, Proc. 21st Ann. IEEE Symp. on Foundations of Computer Science (1980) 17-27.
  • [10] K. Mulmuley, U. Vazirani and V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7 (1987) 105-113, doi: 10.1007/BF02579206.
  • [11] T. Szkaliczki, Routing with minimum wire length in the dogleg-free Manhattan model is NP-complete, SIAM J. Computing 29 (1999) 274-287, doi: 10.1137/S0097539796303123.
  • [12] X. Zhou and T. Nishizeki, Algorithms for the cost edge-coloring of trees, LNCS 2108 (2001) 288-297.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1452
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.