PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 29 | 2 | 349-360
Tytuł artykułu

Monochromatic paths and monochromatic sets of arcs in bipartite tournaments

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours and all of them are used. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices there is no monochromatic path between them and for every vertex v in V(D)∖N there is a monochromatic path from v to some vertex in N. We denote by A⁺(u) the set of arcs of D that have u as the initial endpoint.
In this paper we introduce the concept of semikernel modulo i by monochromatic paths of an m-coloured digraph. This concept allow us to find sufficient conditions for the existence of a kernel by monochromatic paths in an m-coloured digraph. In particular we deal with bipartite tournaments such that A⁺(z) is monochromatic for each z ∈ V(D).
Wydawca
Rocznik
Tom
29
Numer
2
Strony
349-360
Opis fizyczny
Daty
wydano
2009
otrzymano
2007-11-06
poprawiono
2009-03-20
zaakceptowano
2009-03-20
Twórcy
  • Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F. 04510, México
  • Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario, Centro 50000, Toluca, Edo. de México, México
autor
  • Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F. 04510, México
Bibliografia
  • [1] C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).
  • [2] E. Boros and V. Gurvich, Perfect graphs, kernels, and cores of cooperative games, Discrete Math. 306 (2006) 2336-2354, doi: 10.1016/j.disc.2005.12.031.
  • [3] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.
  • [4] P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96.
  • [5] P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.
  • [6] A.S. Fraenkel, Combinatorial games: selected bibliography with a succinct gourmet introduction, Elec. J. Combin. (surveys) #DS2.
  • [7] H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V.
  • [8] H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3.
  • [9] H. Galeana-Sánchez and J.J. García Ruvalcaba, Kernels in the clousure of coloured digraphs, Discuss. Math. Graph Theory 20 (2000) 243-354, doi: 10.7151/dmgt.1123.
  • [10] H. Galena-Sánchez and V. Neumann-Lara, On kernel and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.
  • [11] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.
  • [12] H. Galeana-Sánchez and R. Rojas-Monroy, On monochromatic paths and monochromatic 4-cycles in edge coloured bipartite tournaments, Discrete Math. 285 (2004) 313-318, doi: 10.1016/j.disc.2004.03.005.
  • [13] H. Galeana-Sánchez and R. Rojas-Monroy, Monochromatic paths and most 2-coloured arc sets in edge-coloured tournaments, Graphs and Combin. 21 (2005) 307-317, doi: 10.1007/s00373-005-0618-z.
  • [14] G. Hahn, P. Ille and R. Woodrow, Absorbing sets in arc-coloured tournaments, Discrete Math. 283 (2004) 93-99, doi: 10.1016/j.disc.2003.10.024.
  • [15] T.W. Haynes, T. Hedetniemi and P.J. Slater, editors, Domination in Graphs (Advanced Topics, Marcel Dekker Inc., 1998).
  • [16] T.W. Haynes, T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs (Marcel Dekker Inc., 1998).
  • [17] M. Kucharska, On (k,l)-kernels of orientations of special graphs, Ars Combin. 60 (2001) 137-147.
  • [18] M. Kucharska and M. Kwaśnik, On (k,l)-kernels of superdigraphs of Pₘ and Cₘ, Discuss. Math. Graph Theory 21 (2001) 95-109, doi: 10.7151/dmgt.1135.
  • [19] M. KwaŚnik, The generalization of Richardson's Theorem, Discuss. Math. Graph Theory IV (1981) 11-14.
  • [20] M. KwaŚnik, On (k,l)-kernels of exclusive disjunction, cartesian sum and normal product of two directed graphs, Discuss. Math. Graph Theory V (1982) 29-34.
  • [21] S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7.
  • [22] M.V. Neumann-Lara, Seminúcleos de una digráfica, An. Inst. Mat. UNAM 11 (1971) 55-62.
  • [23] M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755.
  • [24] M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA 39 (1953) 649, doi: 10.1073/pnas.39.7.649.
  • [25] B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8.
  • [26] A. Włoch and I. Włoch, On (k,l)-kernels in generalized products, Discrete Math. 164 (1997) 295-301.
  • [27] I. Włoch, On imp-sets and kernels by monochromatic paths in duplication, Ars Combin. 83 (2007) 93-99.
  • [28] I. Włoch, On kernels by monochromatic paths in the corona of digraphs, Cent. Eur. J. Math. 6 (2008) 537-542.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1451
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.