MONOCHROMATIC PATHS AND MONOCHROMATIC SETS OF ARCS IN 3-QUASITRANSITIVE DIGRAPHS

Hortensia Galeana-Sánchez
R. Rojas-Monroy and B. Zavala

1 Instituto de Matemáticas
Universidad Nacional Autónoma de México
Ciudad Universitaria, México, D.F. 04510, México

2 Facultad de Ciencias
Universidad Autónoma del Estado de México
Instituto Literario, Centro 50000, Toluca, Edo. de México, México

Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex $v \notin N$ there is a monochromatic path from v to N. We denote by $A^+(u)$ the set of arcs of D that have u as the initial vertex. We prove that if D is an m-coloured 3-quasitransitive digraph such that for every vertex u of D, $A^+(u)$ is monochromatic and D satisfies some colouring conditions over one subdigraph of D of order 3 and two subdigraphs of D of order 4, then D has a kernel by monochromatic paths.

Keywords: m-coloured digraph, 3-quasitransitive digraph, kernel by monochromatic paths, γ-cycle, quasi-monochromatic digraph.

2000 Mathematics Subject Classification: 05C15, 05C20.
1. Introduction

For general concepts we refer the reader to [3]. A kernel N of a digraph D is an independent set of vertices of D such that for every $w \in V(D) \setminus N$ there exists an arc from w to N. A digraph D is called kernel perfect digraph when every induced subdigraph of D has a kernel. We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices there is no monochromatic path between them and for every vertex v not in N there is a monochromatic path from v to some vertex in N. The closure of D, denoted $\mathcal{C}(D)$, is the m-coloured digraph defined as follows: $V(\mathcal{C}(D)) = V(D)$, $A(\mathcal{C}(D)) = A(D) \cup \{uv \text{ with colour } i \mid \text{ there exists a } uv\text{-monochromatic path of colour } i \text{ contained in } D\}$. Notice that for any digraph D, $\mathcal{C}(\mathcal{C}(D)) \cong \mathcal{C}(D)$. The problem of the existence of a kernel in a given digraph has been studied by several authors in particular Richardson [14, 15]; Duchet and Meyniel [6]; Duchet [4, 5]; Galeana-Sánchez and V. Neumann-Lara [9, 10]. The concept of kernel by monochromatic paths is a generalization of the concept of kernel and it was introduced by Galeana-Sánchez [7]. In that work she obtained some sufficient conditions for an m-coloured tournament T to have a kernel by monochromatic paths. More information about m-coloured digraphs can be found in [8]. In [16] Sands et al. have proved that any 2-coloured digraph has a kernel by monochromatic paths. In particular they proved that any 2-coloured tournament has a kernel by monochromatic paths. They also raised the following problem: Let T be a 3-coloured tournament such that every directed cycle of length 3 is quasi-monochromatic; must D have a kernel by monochromatic paths? (An m-coloured digraph D is called quasi-monochromatic if with at most one exception all of its arcs are coloured alike). In [13] Shen Minggang proved that under the additional assumption that every transitive tournament of order 3 is quasi-monochromatic, the answer will be yes. In [7] it was proved that if T is an m-coloured tournament such that every directed cycle of length at most 4 is quasi-monochromatic then T has a kernel by monochromatic paths. In [11] we give an affirmative answer for this question for quasi-transitive digraphs whenever $A^+(u)$ is monochromatic for each vertex u ($A^+(u)$ is the set of arcs of D that have u as the initial vertex). A digraph D is called quasi-transitive if whenever $(u, v) \in A(D)$ and $(v, w) \in A(D)$ then $(u, w) \in A(D)$ or $(w, u) \in A(D)$.
Quasi-transitive digraphs were introduced by Ghouila-Houri [12] and have been studied by several authors for example Bang-Jensen and Huang [1, 2].

We call a digraph \(D_n\)-quasitransitive digraph if it has the following property: If \(u, v \in V(D)\) and there is a directed \(uv\)-path of length \(n\) in \(D\), then \((u, v) \in \text{A}(D)\) or \((v, u) \in \text{A}(D)\). In this paper we study \(3\)-quasitransitive digraphs.

We denote by \(e_{T,4}\) the digraph such that \(V(e_{T,4}) = \{u, v, w, x\}\) and \(\text{A}(e_{T,4}) = \{(u, v), (v, w), (w, x), (u, x)\}\). If \(C\) is a walk we will denote by \(\ell(C)\) its length. If \(S \subseteq V(D)\) we denote by \(D[S]\) the subdigraph induced by \(S\). An arc \((u, v) \in \text{A}(D)\) is symmetrical if \((v, u) \in \text{A}(D)\). In this paper we prove that if \(D\) is an \(m\)-coloured \(3\)-quasitransitive digraph such that for every \(C_3\) (the directed cycle of length 3), \(C_4\) (the directed cycle of length 4) and \(T_4\) contained in \(D\) are quasi-monochromatic then \(D\) has a kernel by monochromatic paths.

We will need the following results.

Theorem 1.1. Let \(D\) be a digraph. \(D\) has a kernel by monochromatic paths if and only if \(\mathcal{C}(D)\) has a kernel.

Theorem 1.2. Every \(uv\)-monochromatic walk in a digraph contains a \(uv\)-monochromatic path.

Theorem 1.3 (Berge-Duchet [4]). Let \(D\) be a digraph. If every directed cycle of \(D\) contains a symmetrical arc, then \(D\) is a kernel-perfect digraph.

2. 3-Quasitransitive Digraphs

The following lemma and remarks are about \(3\)-quasitransitive digraphs such that for every \(u \in V(D)\), \(A^+(u)\) is monochromatic, and they are useful to prove our main result.

Let \(T = (u_0, u_1, \ldots, u_n)\) be a path. Then we will denote the path \((u_i, u_{i+1}, \ldots, u_j)\) by \((u_i, T, u_j)\). Here, \([x]\) represents the largest integer less or equal than \(x\).

Lemma 2.1. Let \(D\) be an \(m\)-coloured \(3\)-quasitransitive digraph such that for every vertex \(u \in V(D)\), \(A^+(u)\) is monochromatic. If \(u\) and \(v\) are vertices of \(D\) and \(T = (u = u_0, u_1, \ldots, u_n = v)\) is a \(uv\)-monochromatic path of minimum length \(n \geq 3\), then \((u_i, u_{i+(2k+1)}) \in \text{A}(D)\) for each \(i \in \{3, \ldots, n\}\) and \(k \in \{1, \ldots, \lceil\frac{n-1}{2}\rceil\}\). In particular, if \(\ell(T)\) is odd, then \((v, u) \in \text{A}(D)\) and if \(\ell(T)\) is even, then \((v, u)\) may be absent in \(D\).
Proof. Observe that if T is a uv-monochromatic path of minimum length and $\{u_i, u_j\} \subseteq V(T)$ with $i < j$ then the hypothesis that $A^+(z)$ is monochromatic for every $z \in V(D)$ implies that (u_i, T, u_j) is also a u_iu_j-monochromatic path of minimum length.

We will proceed by induction on $\ell(T) = n$.

When $n = 3$ then $T = (u = u_0, u_1, u_2, u_3 = v)$. Since D is a 3-quasitransitive digraph then $(u_0, u_3) \in A(D)$ or $(u_3, u_0) \in A(D)$. Since T is of minimum length we have that $(u_3, u_0) \in A(D)$.

If $n = 4$ then $T = (u = u_0, u_1, u_2, u_3, u_4 = v)$. By the case $n = 3$ $(u_3, u_0) \in A(D)$ and $(u_4, u_1) \in A(D)$.

Suppose that if $\ell(T) = n \geq 4$ then $(u_i, u_{i-(2k+1)}) \in A(D)$ for each $i \in \{3, \ldots, n\}$ and $k \in \{1, \ldots, \left[\frac{n-1}{2}\right]\}$.

Let $T = (u = u_0, u_1, \ldots, u_n, u_{n+1} = v)$ be a uv-monochromatic path of minimum length. Let $T' = (u, T, u_n)$, then T' is a uu_n-monochromatic path of minimum length. By the induction hypothesis we have that $(u_i, u_{i-(2k+1)}) \in A(D)$ for each $i \in \{3, \ldots, n\}$ and $k \in \{1, \ldots, \left[\frac{n-1}{2}\right]\}$. Also, let $T'' = (u_1, T, v)$, then T'' is a u_1v-monochromatic path of minimum length, the induction hypothesis implies that $(u_i, u_{i-(2k+1)}) \in A(D)$ for each $i \in \{4, \ldots, n + 1\}$ and $k \in \{1, \ldots, \left[\frac{n-1}{2}\right]\}$. So, it is sufficient to prove that $(u_{n+1}, u_0) \in A(D)$ whenever $n + 1$ is odd. Assume $n + 1$ is odd. We have that (u_{n+1}, u_2), $(u_2, u_3), (u_3, u_0) \subseteq A(D)$, so (u_{n+1}, u_2, u_3, u_0) is a path of length 3. Since D is a 3-quasitransitive digraph then $(u_{n+1}, u_0) \in A(D)$ or $(u_0, u_{n+1}) \in A(D)$. Thus $(u_{n+1}, u_0) \in A(D)$.

Remark 2.1. Let D be an m-coloured 3-quasitransitive digraph. If every \bar{T}_4 and C_4 contained in D are at most 2-coloured then D contains no 3-coloured path of length 3.

Remark 2.2. Let D be an m-coloured digraph such that for every vertex $u \in V(D)$ $A^+(u)$ is monochromatic and D contains no 3-coloured C_3. If (u, u_1, u_2, v) is a 3-coloured walk then $u \neq u_1, u \neq u_2, u \neq v, u_1 \neq u_2$ and $u_2 \neq v$.

3. THE MAIN RESULT

Definition 3.1. Let D be an m-coloured digraph. A γ-cycle in D is a sequence of distinct vertices $\gamma = (u_0, u_1, \ldots, u_n, u_0)$ such that for every $i \in \{0, 1, \ldots, n\}$
1. There is a u_iu_{i+1}-monochromatic path and
2. There is no $u_{i+1}u_i$-monochromatic path.

The addition over the indices of the vertices of γ are modulo $n+1$. And we say that the length of γ is $n+1$.

Theorem 3.2. Let D be an m-coloured 3-quasitransitive digraph such that for every vertex u of D, $A^+(u)$ is monochromatic. If every C_3, C_4 and T_4 contained in D is quasi-monochromatic, then there are no γ-cycles in D.

Proof. We will proceed by contradiction. Suppose that $\gamma = (u_0, u_1, \ldots, u_n, u_0)$ is a γ-cycle in D of minimum length. The definition of γ-cycle implies that for every $i \in \{0, \ldots, n\}$ there exist a u_iu_{i+1}-monochromatic path in D namely T_i, (we may assume that T_i is of minimum length) and there is no $u_{i+1}u_i$-monochromatic path in D (notation $\text{mod}(n+1)$). So we have $(u_{i+1}, u_i) \notin A(D)$ and by Remark 2.1 $\ell(T_i)$ is even or $\ell(T_i) = 1$ for every $i \in \{0, \ldots, n\}$. Now we have the following assertions.

1. $\ell(\gamma) \geq 3$. If $\ell(\gamma) = 2$ then $\gamma = (u_0, u_1, u_0)$ and this implies that there is a u_1u_0-monochromatic path, contradicting the definition of γ-cycle.
2. There is an index $i \in \{0, \ldots, n\}$ such that T_i and T_{i+1} have different colours. Otherwise $T_0 \cup T_1 \cup \cdots \cup T_n$ contains a u_0u_n-monochromatic path, a contradiction. Suppose w.l.o.g. that T_0 is coloured 1 and T_1 is coloured 2.
3. There is no u_2u_0-monochromatic path in D. Suppose by contradiction that $T = (u_2 = x_0, x_1, \ldots, x_t = u_0)$ is a u_2u_0-monochromatic path of minimum length in D. Then:

 3.1. T is neither coloured 1 nor 2. This follows from the facts that T_0 is coloured 1, T_1 is coloured 2 and there is no u_2u_1-monochromatic path and u_1u_0-monochromatic path either.

 3.2. $\ell(T_0) \geq 4$ and $\ell(T_1) \geq 4$.

 If $\ell(T_0) = 1 = \ell(T_1)$, then $C = (u_0, u_1, u_2, x_1)$ is a 3-coloured u_0x_1-walk of length 3. So by Remark 2.2 we have that C is a 3-coloured u_0x_1-path of length 3 contradicting the Remark 2.1.

 If $\ell(T_0) = 2$ and $\ell(T_1) = 1$, let $T_0 = (u_0, y, u_1)$, then $C = (y, u_1, u_2, x_1)$ is a 3-coloured walk of length 3. It follows from Remark 2.2 that C is a 3-coloured path of length 3 contradicting the Remark 2.1.

 If $\ell(T_0) = 2 = \ell(T_1)$ then we may consider $T_0 = (u_0, y, u_1)$ and $T_1 = (u_1, z, u_2)$. We have that $z \notin V(T_0)$ so $T_0 \cup (u_1, z)$ (it will denote (u_0, y, u_1, z))
is a path of length 3. Since D is a 3-quasitransitive digraph \((u_0, z) \in A(D)\) or \((z, u_0) \in A(D)\). If \((z, u_0) \in A(D)\) then it is coloured 2 \((A^+(z)\) is coloured 2) and this implies that \((u_0, y, u_1, z, u_0)\) is a \(C_4\) that is not quasi-monochromatic, a contradiction. So \((u_0, z) \in A(D)\) and it is coloured 1 \((A^+(u_0)\) is coloured 1). Let \(C = (u_0, z, u_2, x_1)\). Then \(C\) is a 3-coloured walk of length 3. By Lemma 2.2 we have that \(C\) is a 3-coloured path of length 3 contradicting the Remark 2.1.

If \(\ell(T_0) = 1\) and \(\ell(T_1) = 2\), let \(T_1 = (u_1, z, u_2)\) and consider \(C = (x_{t-1}, u_0, u_1, z)\). Then \(C\) is a 3-coloured walk. Remark 2.2 imply that \(C\) is a 3-coloured path of length 3, contradicting the Remark 2.1.

We conclude that \(\ell(T_0) \geq 4\) and \(\ell(T_1) \geq 4\). Let \(T_0 = (u_0 = y_0, y_1, \ldots, y_{\ell} = u_1)\) and \(T_1 = (u_1 = z_0, z_1, \ldots, z_k = u_2)\) with \(\ell \geq 4\) and \(k \geq 4\).

3.3. \(\ell(T) \geq 3\).

Suppose by contradiction that \(\ell(T) < 3\).

If \(\ell(T) = 1\) then \(C = (z_{k-1}, u_2, u_0, y_1)\) is a 3-coloured walk. Remark 2.2 implies that \(C\) is a 3-coloured path of length 3 but this is a contradiction with the Remark 2.1. If \(\ell(T) = 2\) then \(C_1 = (z_{k-1}, u_2) \cup T\) is a \(z_{k-1}u_0\)-path of length three. Since \(D\) is a 3-quasitransitive digraph then \((z_{k-1}, u_0) \in A(D)\) or \((u_0, z_{k-1}) \in A(D)\). If \((z_{k-1}, u_0) \in A(D)\) then it is coloured 2 and \(D[\{z_{k-1}, u_2, x_1, u_0\}]\) contains a \(T_4\) which is not quasi-monochromatic, a contradiction. If \((u_0, z_{k-1}) \in A(D)\) then it is coloured 1 and \((u_0, z_{k-1}, u_2, x_1)\) is a 3-coloured path of length three, a contradiction to Remark 2.1. We conclude that \(\ell(T) \geq 3\).

3.4. \((u_0, u_2) \notin A(D)\).

Proceeding by contradiction, suppose that \((u_0, u_2) \in A(D)\). Since \(T_0\) is coloured 1 then \((u_0, u_2)\) is coloured 1. By Lemma 2.1 (remember that \(\ell(T_i)\) is even) we have that \((u_2, z_1) \in A(D),\) so it is coloured 3. Then \((u_0, u_2, z_1, z_2)\) is a path of length 3 that is 3-coloured, but this is a contradiction with Remark 2.1.

3.5. \(\ell(T_0) \geq 4, \ell(T_1) \geq 4, \ell(T) \geq 4\) and \(\ell(T)\) is even.

(3.3) implies that \(\ell(T) \geq 3\). Since \(T\) is a \(u_2u_0\)-monochromatic path of minimum length \((u_2, u_0) \notin A(D)\) and by assertion (3.4) \((u_0, u_2) \notin A(D)\). So it follows from Lemma 2.1 that \(\ell(T)\) is even.

Now, Lemma 2.1 implies that \((u_0, x_1) \in A(D)\), and it is coloured 1. Then \((z_{k-1}, u_2, x_1, x_2)\) is a path of length 3. Since \(D\) is a 3-quasitransitive digraph \((z_{k-1}, x_2) \in A(D)\) or \((x_2, z_{k-1}) \in A(D)\). If \((z_{k-1}, x_2) \in A(D)\) it is coloured 2
and $D[\{z_{k-1}, u_2, x_1, x_2\}]$ contains a T_4 that is not quasi-monochromatic. So $(x_2, z_{k-1}) \in A(D)$ and it is coloured 3. Then (u_0, x_1, x_2, z_{k-1}) is a u_0z_{k-1}-path of length 3. Since D is a 3-quasitransitive digraph then $(u_0, z_{k-1}) \in A(D)$ or $(z_{k-1}, u_0) \in A(D)$. If $(u_0, z_{k-1}) \in A(D)$ then it is coloured 1, so $D[\{u_0, x_1, x_2, z_{k-1}\}]$ contains a T_4 that is not quasi-monochromatic, a contradiction. We may assume that $(z_{k-1}, u_0) \in A(D)$, so it is coloured 2. Then (u_0, x_1, x_2, z_{k-1}) is a C_4 that is not quasi-monochromatic, a contradiction.

We conclude that there is no u_2u_0-monochromatic path in D.

4. $\ell(\gamma) \geq 4$. It follows from (1) and (3).

5. There is no u_0u_2-monochromatic path in D.

Assume that there exists a u_0u_2-monochromatic path in D. Then $\gamma_1 = (u_0, u_2, u_3, \ldots, u_n, u_0)$ would be a γ-cycle such that $\ell(\gamma_1) < \ell(\gamma)$ contradicting the choice of γ.

6. If T_i and T_{i+1} have different colours then there is no $u_{i+2}u_i$-monochromatic path and there is no u_iu_{i+2}-monochromatic path either.

This follows the same way as (3) and (5).

7. If T_i and T_{i+1} have different colours and $\ell(T_i) = 1$, for some $i \in \{0, \ldots, n\}$, then $\ell(T_{i+1}) = 1$.

W.l.o.g. suppose that $\ell(T_0) = 1$. Suppose by contradiction that $\ell(T_1) \geq 2$. If $\ell(T_1) = 2$, let $T_1 = (u_1, z, u_2)$. In this case (u_0, u_1, z, u_2) is a u_0u_2-path of length 3. Since D is a 3-quasitransitive digraph then $(u_0, u_2) \in A(D)$ or $(u_2, u_0) \in A(D)$, contradicting (5) or (3) respectively. We may assume that $\ell(T_1) > 2$. Let $T_1 = (u_1 = z_0, z_1, \ldots, z_k = u_2)$. Then (u_0, u_1, z_1, z_2) is a u_0z_2-path of length 3. Since D is a 3-quasitransitive digraph $(u_0, z_2) \in A(D)$ or $(z_2, u_0) \in A(D)$. If $(u_0, z_2) \in A(D)$ then it is coloured 1 and $D[\{u_0, u_1, z_1, z_2\}]$ contains a T_4 that is not quasi-monochromatic, a contradiction. If $(z_2, u_0) \in A(D)$ then it is coloured 2 and (u_1, z_1, z_2, u_0) is a u_1u_2-monochromatic path contradicting that γ is a γ-cycle. We conclude that $\ell(T_1) = 1$.

8. If T_i and T_{i+1} have different colours and $\ell(T_i) = 1$ then T_{i+2} is coloured with the same colour of T_i.

W.l.o.g. suppose that $i = 0$, T_0 is coloured 1 and T_1 is coloured 2. $\ell(T_0) = 1$ and assertion (7) imply that $\ell(T_1) = 1$. Let $T_2 = (u_2, x_1, \ldots, x_t = u_3)$. Then $C = (u_0, u_1, u_2, x_1)$ is a u_0x_1-walk of length 3. The definition of γ-cycle implies that $x_1 \neq u_1$ and from assertion (3) we obtain that $x_1 \neq u_0$.

So C is a u_0x_1-path of length 3. Since D is a 3-quasitransitive digraph
\[(u_0, x_1) \in A(D)\] or \[(x_1, u_0) \in A(D)\]. From the hypothesis that every \(C_4\) and \(T_4\) in \(D\) is quasi-monochromatic, then the arc between \(x_1\) and \(u_0\) and \((u_2, x_1)\) have the same colour. If \((x_1, u_0) \in A(D)\) then \((u_2, x_1, u_0)\) is a \(w_3u_0\)-monochromatic path contradicting assertion (3). We may assume that \((u_0, x_1) \in A(D)\). Then \((u_0, x_1)\) and \((u_2, x_1)\) are coloured 1. Hence \(T_2\) is coloured 1.

To conclude the proof of the theorem we will analyze 5 possible cases.

Case 1. Suppose that \(\ell(T_0) = 1\).

Applying assertions (7) and (8) repeatedly we have that \(\ell(T_i) = 1\) for every \(i \in \{0, \ldots, n\}\). \(T_i\) is coloured 1 if \(i\) is even and \(T_i\) is coloured 2 if \(i\) is odd. This implies that \(\gamma = (u_0, u_1, \ldots, u_n, u_0)\) is a 2-coloured cycle in \(D\) such that the colours of its arcs are alternated, so \(n\) is odd.

We will prove by induction that \((u_0, u_i) \in A(D)\) for every odd \(i, i \in \{1, \ldots, n\}\). For \(i = 1\), \((u_0, u_1) \in A(D)\), since \(\gamma\) is a cycle. Suppose that \((u_0, u_{2k-1}) \in A(D)\) for \(i = 2k - 1\), where \(k \geq 1\). Now, we will prove that \((u_0, u_{2k+1}) \in A(D)\). We have that \(((u_0, u_1), (u_0, u_{2k-1}), (u_{2k}, u_{2k+1}))\) are coloured 1 and \((u_{2k-1}, u_{2k})\) is coloured 2. Let \(T = (u_0, u_{2k-1}, u_{2k}, u_{2k+1})\).

Then \(T\) is a \(u_0u_{2k+1}\)-path of length 3. Since \(D\) is a 3-quasitransitive digraph \((u_0, u_{2k+1}) \in A(D)\) or \((u_{2k+1}, u_0) \in A(D)\). Hence \(D[V(T)]\) contains a \(T_4\) or a \(C_4\). Since every \(T_4\) and \(C_4\) contained in \(D\) is quasi-monochromatic then the arc between \(u_0\) and \(u_{2k+1}\) is coloured 1. If \((u_{2k+1}, u_0) \in A(D)\) then \((u_{2k}, u_{2k+1}, u_0, u_{2k-1})\) is a \(u_{2k}u_{2k-1}\)-monochromatic path, contradicting the definition of \(\gamma\)-cycle, so \((u_0, u_{2k+1}) \in A(D)\). We conclude that \((u_0, u_i) \in A(D)\) for every odd \(i \in \{1, \ldots, n\}\). Since \(n\) is odd \((u_0, u_n) \in A(D)\), but this contradicts the definition of \(\gamma\)-cycle.

Case 2. Suppose that \(\ell(T_0) = 2\) and \(\ell(T_1) = 1\).

Let \(T_0 = (u_0, x, u_1)\). Then \(C = T_0 \cup T_1\) is a walk of length 3. Assertion (5) implies that \(x \neq u_2\). \(C\) is a path of length 3. Since \(D\) is a 3-quasitransitive digraph \((u_0, u_2) \in A(D)\) or \((u_2, u_0) \in A(D)\). In any case we obtain a contradiction to assertion (5) or (3) respectively.

Case 3. \(\ell(T_0) = 2\) and \(\ell(T_1) \geq 2\).

Let \(T_0 = (u_0, x, u_1)\) and \(T_1 = (u_1, y_1, y_2, \ldots, y_t = u_2)\) where, \(t \geq 2\). Then \(C = T_0 \cup (u_1, y_1)\) is a path of length 3. Since \(D\) is a 3-quasitransitive digraph then \((u_0, y_1) \in A(D)\) or \((y_1, u_0) \in A(D)\). So, \(D[V(C)]\) contains a \(C_4\) or a \(T_4\), by the hypothesis it should be quasi-monochromatic.
Theorem 3.2. Proof: a symmetrical arc. Let u_0 be a path of length 3. Then $(u_0, y_1) \in A(D)$. Also $C' = (x, u_1, y_1, y_2)$ is a path of length 3, $(y_2, x) \in A(D)$ and it is coloured 2. Now, $D(\{u_0, y_1, y_2, x\})$ contains a T_4 that is not quasi-monochromatic, a contradiction.

Case 4. $\ell(T_0) \geq 4$ and $\ell(T_1) = 1$. Let $T_0 = (u_0, x_1, x_2, \ldots, x_{t-1}, x_t = u_1)$ with $t \geq 4$. We have $C = (x_{t-2}, x_{t-1}, x_t = u_1, u_2)$ is a path of length 3 (the definition of γ-cycle implies that there is no $u_2 u_1$-monochromatic path). Since D is a 3-quasitransitive digraph $(x_{t-2}, u_2) \in A(D)$ or $(u_2, x_{t-2}) \in A(D)$. So, $D[V(C)]$ contains a T_4 or a C_4, by hypothesis it should be quasi-monochromatic. Then the arc between x_{t-2} and u_2 is coloured 1. If $(u_2, x_{t-2}) \in A(D)$ then $(u_2, x_{t-2}, x_{t-1}, u_1)$ is a $u_2 u_1$-monochromatic path contradicting the definition of γ-cycle. So $(x_{t-2}, u_2) \in A(D)$. Hence $(u_0, x_1, \ldots, x_{t-2}, u_2)$ is a $u_0 u_2$-monochromatic path contradicting assertion (5).

Case 5. $\ell(T_0) \geq 4$ and $\ell(T_1) \geq 2$. Let $T_0 = (u_0, x_1, x_2, \ldots, x_{t-1}, x_t = u_1)$ and $T_1 = (u_1, y_1, y_2, \ldots, y_t = u_2)$. Then $C = (x_{t-2}, x_{t-1}, x_t = u_1, y_1)$ is an $x_{t-2} y_1$-path of length 3 (Remark 2.1). Since D is a 3-quasitransitive digraph then $(x_{t-2}, y_1) \in A(D)$ or $(y_1, x_{t-2}) \in A(D)$. Then $D[V(C)]$ contains a T_4 or a C_4, by hypothesis it should be quasi-monochromatic. Then the arc between x_{t-2} and y_1 is coloured 1. Hence $(y_1, x_{t-2}) \notin A(D)$, $A^+(y_1)$ is coloured 2, $(x_{t-2}, y_1) \in A(D)$ and it is coloured 1. Also, $C' = (x_{t-1}, u_1, y_1, y_2)$ is a $x_{t-1} y_2$-path of length 3. Then $(x_{t-1}, y_2) \in A(D)$ or $(y_2, x_{t-1}) \in A(D)$. Since every T_4 and C_4 is quasi-monochromatic, we have that $(y_2, x_{t-1}) \in A(D)$ and it is coloured 2. Then $D(\{x_{t-2}, y_1, y_2, x_{t-1}\})$ contains a T_4 that is not quasi-monochromatic, a contradiction.

We conclude that D contains no γ-cycles.

Theorem 3.3. Let D be an m-coloured 3-quasitransitive digraph such that for every $u \in V(D)$, $A^+(u)$ is monochromatic. If every C_3, C_4 and T_4 contained in D is quasi-monochromatic, then $\mathcal{E}(D)$ is a kernel-perfect digraph.

Proof. By Theorem 1.3 we will prove that every cycle in $\mathcal{E}(D)$ contains a symmetrical arc. Let C a cycle in $\mathcal{E}(D)$. Assume for a contradiction, that C has no symmetrical arcs. Then C is a γ-cycle in D contradicting Theorem 3.2.
Corollary 3.4. Let D be an m-coloured 3-quasitransitive digraph such that for every $u \in V(D)$, $A^+(u)$ is monochromatic. If every C_3, C_4 and \tilde{T}_4 contained in D is quasi-monochromatic, then D has a kernel by monochromatic paths.

Corollary 3.5. Let T be an m-coloured tournament such that for every $u \in V(D)$, $A^+(u)$ is monochromatic. If every C_3, C_4 and $e \in T_4$ contained in D is quasi-monochromatic, then T has a kernel by monochromatic paths.

Corollary 3.6. Let D be an m-coloured bipartite tournament such that for every $u \in V(D)$, $A^+(u)$ is monochromatic. If every C_4 and $e \in T_4$ contained in D is quasi-monochromatic, then D has a kernel by monochromatic paths.

Remark 3.1. The condition that D contains no C_3 3-coloured in Theorem 3.3 cannot be dropped. Let D_n be the digraph obtained from D_{n-1} (D_0 is a 3-coloured C_3) by adding the vertex v_n and arcs (v_n,v) for every $v \in V(D_{n-1})$, all arcs coloured with some colour j. D_n is an m-coloured 3-quasitransitive digraph with $A^+(z)$ monochromatic for every $z \in V(D_n)$, every C_3 and \tilde{T}_4 are quasi-monochromatic, D_n contains a γ-cycle (C_3) and D_n has no kernel by monochromatic paths.

Remark 3.2. The condition that every C_4 of D is quasi-monochromatic in Theorem 3.2 is tight. Let D be a 3-quasitransitive digraph 2-coloured with $V(D) = \{u,v,w,x\}$ and $A(D) = \{(u,v),(v,w),(w,x),(x,u)\}$ such that $(u,v),(w,x)$ are coloured 1 and $(v,w),(x,u)$ are coloured 2. In $D A^+(z)$ is monochromatic for every $z \in V(D)$, D has a γ-cycle. Moreover, for each n we give a digraph D_n, obtained from $D_0 = D$, that satisfies all the conditions of Theorem 3.2 except the one over C_4 and has a γ-cycle. D_n is obtained from D_{n-1} by adding the vertex v_n and the arcs (v_n,x) and (v,v_n) with colours j (for some j) and 2 respectively.

Acknowledgement
The authors are grateful to the anonymous referee for carefully reading the manuscript and many improved suggestions and corrections.

References

Received 6 November 2007
Revised 26 February 2009
Accepted 27 February 2009