ArticleOriginal scientific text

Title

Monochromatic paths and monochromatic sets of arcs in 3-quasitransitive digraphs

Authors 1, 2, 1

Affiliations

  1. Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria, México, D.F. 04510, México
  2. Facultad de Ciencias, Universidad Autónoma del Estado de México, Instituto Literario, Centro 50000, Toluca, Edo. de México, México

Abstract

We call the digraph D an m-coloured digraph if the arcs of D are coloured with m colours. A directed path is called monochromatic if all of its arcs are coloured alike. A set N of vertices of D is called a kernel by monochromatic paths if for every pair of vertices of N there is no monochromatic path between them and for every vertex v ∉ N there is a monochromatic path from v to N. We denote by A⁺(u) the set of arcs of D that have u as the initial vertex. We prove that if D is an m-coloured 3-quasitransitive digraph such that for every vertex u of D, A⁺(u) is monochromatic and D satisfies some colouring conditions over one subdigraph of D of order 3 and two subdigraphs of D of order 4, then D has a kernel by monochromatic paths.

Keywords

m-coloured digraph, 3-quasitransitive digraph, kernel by monochromatic paths, γ-cycle, quasi-monochromatic digraph

Bibliography

  1. J. Bang-Jensen and J. Huang, Quasi-transitive digraphs, J. Graph Theory 20 (1995) 141-161, doi: 10.1002/jgt.3190200205.
  2. J. Bang-Jensen and J. Huang, Kings in quasi-transitive digraphs, Discrete Math. 185 (1998) 19-27, doi: 10.1016/S0012-365X(97)00179-9.
  3. C. Berge, Graphs (North Holland, Amsterdam, New York, 1985).
  4. P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101, doi: 10.1016/S0167-5060(08)70041-4.
  5. P. Duchet, Classical Perfect Graphs, An introduction with emphasis on triangulated and interval graphs, Ann. Discrete Math. 21 (1984) 67-96.
  6. P. Duchet and H. Meyniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105, doi: 10.1016/0012-365X(81)90264-8.
  7. H. Galeana-Sánchez, On monochromatic paths and monochromatic cycles in edge coloured tournaments, Discrete Math. 156 (1996) 103-112, doi: 10.1016/0012-365X(95)00036-V.
  8. H. Galeana-Sánchez, Kernels in edge coloured digraphs, Discrete Math. 184 (1998) 87-99, doi: 10.1016/S0012-365X(97)00162-3.
  9. H. Galena-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs, Discrete Math. 48 (1984) 67-76, doi: 10.1016/0012-365X(84)90131-6.
  10. H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs, Discrete Math. 59 (1986) 257-265, doi: 10.1016/0012-365X(86)90172-X.
  11. H. Galeana-Sánchez, R. Rojas-Monroy and B. Zavala, Monochromatic paths and monochromatic sets of arcs in quasi-transitive digraphs, submitted.
  12. Ghouilá-Houri, Caractérisation des graphes non orientés dont on peut orienter les aretes de maniére à obtenir le graphe d'une relation d'ordre, C.R. Acad. Sci. Paris 254 (1962) 1370-1371.
  13. S. Minggang, On monochromatic paths in m-coloured tournaments, J. Combin. Theory (B) 45 (1988) 108-111, doi: 10.1016/0095-8956(88)90059-7.
  14. M. Richardson, Solutions of irreflexive relations, Ann. Math. 58 (1953) 573, doi: 10.2307/1969755.
  15. M. Richardson, Extensions theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA 39 (1953) 649, doi: 10.1073/pnas.39.7.649.
  16. B. Sands, N. Sauer and R. Woodrow, On monochromatic paths in edge-coloured digraphs, J. Combin. Theory (B) 33 (1982) 271-275, doi: 10.1016/0095-8956(82)90047-8.
Pages:
337-347
Main language of publication
English
Received
2007-11-06
Accepted
2009-02-26
Published
2009
Exact and natural sciences