PL EN

Preferencje
Język
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo

## Discussiones Mathematicae Graph Theory

2009 | 29 | 2 | 253-261
Tytuł artykułu

### Minimum vertex ranking spanning tree problem for chordal and proper interval graphs

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A vertex k-ranking of a simple graph is a coloring of its vertices with k colors in such a way that each path connecting two vertices of the same color contains a vertex with a bigger color. Consider the minimum vertex ranking spanning tree (MVRST) problem where the goal is to find a spanning tree of a given graph G which has a vertex ranking using the minimal number of colors over vertex rankings of all spanning trees of G. K. Miyata et al. proved in [NP-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem, Discrete Appl. Math. 154 (2006) 2402-2410] that the decision problem: given a simple graph G, decide whether there exists a spanning tree T of G such that T has a vertex 4-ranking, is NP-complete. In this paper we improve this result by proving NP-hardness of finding for a given chordal graph its spanning tree having vertex 3-ranking. This bound is the best possible. On the other hand we prove that MVRST problem can be solved in linear time for proper interval graphs.
Słowa kluczowe
EN
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
253-261
Opis fizyczny
Daty
wydano
2009
otrzymano
2007-12-03
poprawiono
2009-03-10
zaakceptowano
2009-03-10
Twórcy
autor
• Department of Algorithms and System Modeling, Gdańsk University of Technology, Poland
Bibliografia
• [1] A.S. Arefin and M.A. Kashem, NP-Completeness of the minimum edge-ranking spanning tree problem on series-parallel graphs, Proc. 10th International Conference on Computer and Information Technology, 2008 (ICCIT 2007) 1-4.
• [2] K.S. Booth and G.S. Lueker, Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms, J. Comput. System Sci. 13 (1976) 335-379, doi: 10.1016/S0022-0000(76)80045-1.
• [3] D.Z. Chen, D. Lee, R. Sridhar and C.N. Sekharan, Solving the all-pair shortest path query problem on interval and circular-arc graphs, Networks 31 (1998) 249-257, doi: 10.1002/(SICI)1097-0037(199807)31:4<249::AID-NET5>3.0.CO;2-D
• [4] J.S. Deogun, T. Kloks, D. Kratsch and H. Müller, On the vertex ranking problem for trapezoid, circular-arc and other graphs, Discrete Appl. Math. 98 (1999) 39-63, doi: 10.1016/S0166-218X(99)00179-1.
• [5] D. Dereniowski, Edge ranking and searching in partial orders, Discrete Appl. Math. 156 (2008) 2493-2500, doi: 10.1016/j.dam.2008.03.007.
• [6] D. Dereniowski and M. Kubale, Efficient parallel query processing by graph ranking, Fundamenta Informaticae 69 (2006) 273-285.
• [7] D. Dereniowski and A. Nadolski, Vertex rankings of chordal graphs and weighted trees, Inform. Process. Letters 98 (2006) 96-100, doi: 10.1016/j.ipl.2005.12.006.
• [8] S.-Y. Hsieh, On vertex ranking of a starlike graph, Inform. Process. Letters 82 (2002) 131-135, doi: 10.1016/S0020-0190(01)00262-9.
• [9] M.A. Kashem, M.A. Haque, M.R. Uddin and S.A. Sharmin, An algorithm for finding minimum edge-ranking spanning tree of series-parallel graphs, Proc. of the 9th International Conference on Computer and Information Technology (ICCIT 2006) 108-112.
• [10] K. Makino, Y. Uno and T. Ibaraki, Minimum edge ranking spanning trees of threshold graphs, Lecture Notes in Comp. Sci. 2518 (2002) 59-77.
• [11] K. Makino, Y. Uno and T. Ibaraki, On minimum edge ranking spanning trees, J. Algorithms 38 (2001) 411-437, doi: 10.1006/jagm.2000.1143.
• [12] K. Miyata, S. Masuyama, S. Nakayama and L. Zhao, Np-hardness proof and an approximation algorithm for the minimum vertex ranking spanning tree problem, Discrete Appl. Math. 154 (2006) 2402-2410, doi: 10.1016/j.dam.2006.04.016.
• [13] S. Nakayama and S. Masuyama, An algorithm for solving the minimum vertex ranking spanning tree problem on interval graphs, IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E86-A (2003) 1019-1026.
• [14] S. Nakayama and S. Masuyama, A polynomial time algorithm for obtaining a minimum vertex ranking spanning tree in outerplanar graphs, IEICE Transactions on Information and Systems E89-D (2006) 2357-2363, doi: 10.1093/ietisy/e89-d.8.2357.
• [15] A. Pothen, The complexity of optimal elimination trees, Tech. Report CS-88-13, The Pennsylvania State University, 1988.
• [16] A.A. Schäffer, Optimal node ranking of trees in linear time, Inform. Process. Letters 33 (1989) 91-96, doi: 10.1016/0020-0190(89)90161-0.
Typ dokumentu
Bibliografia
Identyfikatory