ArticleOriginal scientific text
Title
Quasiperfect domination in triangular lattices
Authors 1
Affiliations
- University of Puerto Rico, Rio Piedras, PR 00931-3355
Abstract
A vertex subset S of a graph G is a perfect (resp. quasiperfect) dominating set in G if each vertex v of G∖S is adjacent to only one vertex ( ∈ {1,2} vertices) of S. Perfect and quasiperfect dominating sets in the regular tessellation graph of Schläfli symbol {3,6} and in its toroidal quotients are investigated, yielding the classification of their perfect dominating sets and most of their quasiperfect dominating sets S with induced components of the form , where ν ∈ {1,2,3} depends only on S.
Keywords
perfect dominating set, quasiperfect dominating set, triangular lattice
Bibliography
- D.W. Bange, A.E. Barkauskas and P.J. Slater, Efficient dominating sets in graphs, Appl. Discrete Math, eds. R.D. Ringeisen and F.S. Roberts (SIAM, Philadelphia, 1988) 189-199.
- I.J. Dejter, Perfect domination of regular grid graphs, Australasian J. Combin. 92 (2008) 99-114.
- I.J. Dejter and A.A. Delgado, Perfect dominating sets in grid graphs, JCMCC 70 (2009), to appear.
- L. Fejes Tóth, Regular Figures (Pergamon Press, Oxford UK, 1964).
- J. Kratochvil and M. Krivánek, On the Computational Complexity of Codes in Graphs, in: Proc. MFCS 1988, LNCS 324 (Springer-Verlag), 396-404.
- C. Thomassen, On the Nelson unit distance coloring problem, Amer. Math. Monthly 106 (1999) 850-853, doi: 10.2307/2589618.