ArticleOriginal scientific text

Title

Convex independence and the structure of clone-free multipartite tournaments

Authors 1, 2, 2

Affiliations

  1. Department of Mathematics, Grand Valley State University, Allendale, MI 49401-6495, USA
  2. Department of Mathematics & Computer Science, Bemidji State University, Bemidji, MN 56601, USA

Abstract

We investigate the convex invariants associated with two-path convexity in clone-free multipartite tournaments. Specifically, we explore the relationship between the Helly number, Radon number and rank of such digraphs. The main result is a structural theorem that describes the arc relationships among certain vertices associated with vertices of a given convexly independent set. We use this to prove that the Helly number, Radon number, and rank coincide in any clone-free bipartite tournament. We then study the relationship between Helly independence and Radon independence in clone-free multipartite tournaments. We show that if the rank is at least 4 or the Helly number is at least 3, then the Helly number and the Radon number are equal.

Keywords

convex sets, rank, Helly number, Radon number, multipartite tournaments

Bibliography

  1. M. Changat and J. Mathew, On triangle path convexity in graphs, Discrete Math. 206 (1999) 91-95, doi: 10.1016/S0012-365X(98)00394-X.
  2. G. Chartrand and J.F. Fink and P. Zhang, Convexity in oriented graphs, Discrete Applied Math. 116 (2002) 115-126, doi: 10.1016/S0166-218X(00)00382-6.
  3. G. Chartrand and P. Zhang, Convex sets in graphs, Cong. Numer. 136 (1999) 19-32.
  4. P. Duchet, Convexity in graphs II. Minimal path convexity, J. Combin. Theory (B) 44 (1988) 307-316, doi: 10.1016/0095-8956(88)90039-1.
  5. P. Erdös, E. Fried, A. Hajnal and E.C. Milner, Some remarks on simple tournaments, Algebra Universalis 2 (1972) 238-245, doi: 10.1007/BF02945032.
  6. M.G. Everett and S.B. Seidman, The hull number of a graph, Discrete Math. 57 (1985) 217-223, doi: 10.1016/0012-365X(85)90174-8.
  7. D.J. Haglin and M.J. Wolf, On convex subsets in tournaments, SIAM Journal on Discrete Mathematics 9 (1996) 63-70, doi: 10.1137/S0895480193251234.
  8. F. Harary and J. Nieminen, Convexity in graphs, J. Differential Geometry 16 (1981) 185-190.
  9. R.E. Jamison and R. Nowakowski, A Helly theorem for convexity in graphs, Discrete Math. 51 (1984) 35-39, doi: 10.1016/0012-365X(84)90021-9.
  10. J.W. Moon, Embedding tournaments in simple tournaments, Discrete Math. 2 (1972) 389-395, doi: 10.1016/0012-365X(72)90016-7.
  11. J. Nieminen, On path- and geodesic-convexity in digraphs, Glasnik Matematicki 16 (1981) 193-197.
  12. D.B. Parker, R.F. Westhoff and M.J. Wolf, On two-path convexity in multipartite tournaments, European J. Combin. 29 (2008) 641-651, doi: 10.1016/j.ejc.2007.03.009.
  13. D.B. Parker, R.F. Westhoff and M.J. Wolf, Two-path convexity in clone-free regular multipartite tournaments, Australas. J. Combin. 36 (2006) 177-196.
  14. A. Abueida, W.S. Diestelkamp, S.P. Edwards and D.B. Parker, Determining properties of a multipartite tournament from its lattice of convex subsets, Australas. J. Combin. 31 (2005) 217-230.
  15. D.B. Parker, R.F. Westhoff and M.J. Wolf, Two-path convexity and bipartite tournaments of small rank, to appear in Ars Combin.
  16. J.L. Pfaltz, Convexity in directed graphs, J. Combin. Theory 10 (1971) 143-152, doi: 10.1016/0095-8956(71)90074-8.
  17. N. Polat, A Helly theorem for geodesic convexity in strongly dismantlable graphs, Discrete Math. 140 (1995) 119-127, doi: 10.1016/0012-365X(93)E0178-7.
  18. J.C. Varlet, Convexity in Tournaments, Bull. Societe Royale des Sciences de Liege 45 (1976) 570-586.
  19. M.L.J van de Vel, Theory of Convex Structures (North Holland, Amsterdam, 1993).
Pages:
51-69
Main language of publication
English
Received
2007-09-24
Accepted
2008-06-27
Published
2009
Exact and natural sciences