ArticleOriginal scientific text
Title
On locating and differentiating-total domination in trees
Authors 1
Affiliations
- LAMDA-RO Laboratory, Department of Mathematics, University of Blida, B.P. 270, Blida, Algeria
Abstract
A total dominating set of a graph G = (V,E) with no isolated vertex is a set S ⊆ V such that every vertex is adjacent to a vertex in S. A total dominating set S of a graph G is a locating-total dominating set if for every pair of distinct vertices u and v in V-S, N(u)∩S ≠ N(v)∩S, and S is a differentiating-total dominating set if for every pair of distinct vertices u and v in V, N[u]∩S ≠ N[v] ∩S. Let and be the minimum cardinality of a locating-total dominating set and a differentiating-total dominating set of G, respectively. We show that for a nontrivial tree T of order n, with l leaves and s support vertices, , and for a tree of order n ≥ 3, , improving the lower bounds of Haynes, Henning and Howard. Moreover we characterize the trees satisfying or .
Keywords
locating-total domination, differentiating-total domination, trees
Bibliography
- M. Blidia, M. Chellali, F. Maffray, J. Moncel and A. Semri, Locating-domination and identifying codes in trees, Australasian J. Combin. 39 (2007) 219-232.
- M. Chellali and T.W. Haynes, A note on the total domination number of a tree, J. Combin. Math. Combin. Comput. 58 (2006) 189-193.
- J. Gimbel, B. van Gorden, M. Nicolescu, C. Umstead and N. Vaiana, Location with dominating sets, Congr. Numer. 151 (2001) 129-144.
- T.W. Haynes, M.A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math. 154 (2006) 1293-1300, doi: 10.1016/j.dam.2006.01.002.