ArticleOriginal scientific text

Title

Ordered and linked chordal graphs

Authors 1, 1, 1

Affiliations

  1. Institut für Mathematik, Technische Universität Ilmenau, Ilmenau, Germany

Abstract

A graph G is called k-ordered if for every sequence of k distinct vertices there is a cycle traversing these vertices in the given order. In the present paper we consider two novel generalizations of this concept, k-vertex-edge-ordered and strongly k-vertex-edge-ordered. We prove the following results for a chordal graph G: (a) G is (2k-3)-connected if and only if it is k-vertex-edge-ordered (k ≥ 3). (b) G is (2k-1)-connected if and only if it is strongly k-vertex-edge-ordered (k ≥ 2). (c) G is k-linked if and only if it is (2k-1)-connected.

Keywords

paths and cycles, connectivity, chordal graphs

Bibliography

  1. B. Bollobás and A. Thomason, Highly linked graphs, Combinatorica 16 (1996) 313-320, doi: 10.1007/BF01261316.
  2. R. Diestel, Graph Theory, Graduate Texts in Mathematics 173 (Springer, 2000).
  3. G.A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg 25 (1961) 71-76, doi: 10.1007/BF02992776.
  4. R.J. Faudree, Survey on results on k-ordered graphs, Discrete Math. 229 (2001) 73-87, doi: 10.1016/S0012-365X(00)00202-8.
  5. H.A. Jung, Eine veralgemeinerung des n-fachen zusammenhangs für graphen, Math. Ann. 187 (1970) 95-103, doi: 10.1007/BF01350174.
  6. D.G. Larman and P. Mani, On the existence of certain configurations within graphs and the 1-skeleton of polytopes, Proc. London Math. Soc. 20 (1970) 144-160, doi: 10.1112/plms/s3-20.1.144.
  7. L. Ng and M. Schultz, k-ordered Hamiltonian graphs, J. Graph Theory 24 (1997) 45-57, doi: 10.1002/(SICI)1097-0118(199701)24:1<45::AID-JGT6>3.0.CO;2-J
  8. R. Thomas and P. Wollan, An improved linear edge bound for graph linkages, to appear in European J. Comb.
Pages:
367-373
Main language of publication
English
Received
2007-09-20
Accepted
2008-04-01
Published
2008
Exact and natural sciences