Czasopismo
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, two notions, the clique irreducibility and clique vertex irreducibility are discussed. A graph G is clique irreducible if every clique in G of size at least two, has an edge which does not lie in any other clique of G and it is clique vertex irreducible if every clique in G has a vertex which does not lie in any other clique of G. It is proved that L(G) is clique irreducible if and only if every triangle in G has a vertex of degree two. The conditions for the iterations of line graph, the Gallai graphs, the anti-Gallai graphs and its iterations to be clique irreducible and clique vertex irreducible are also obtained.
Kategorie tematyczne
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
307-321
Opis fizyczny
Daty
wydano
2008
otrzymano
2007-10-09
poprawiono
2008-03-18
zaakceptowano
2008-03-18
Twórcy
autor
- Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India
autor
- Department of Mathematics, Cochin University of Science and Technology, Cochin-682 022, India
Bibliografia
- [1] Aparna Lakshmanan S., S.B. Rao and A. Vijayakumar, Gallai and anti-Gallai graphs of a graph, Math. Bohem. 132 (2007) 43-54.
- [2] R. Balakrishnan and K. Ranganathan, A Text Book of Graph Theory (Springer, 1999).
- [3] L. Chong-Keang and P. Yee-Hock, On graphs without multicliqual edges, J. Graph Theory 5 (1981) 443-451, doi: 10.1002/jgt.3190050416.
- [4] V.B. Le, Gallai graphs and anti-Gallai graphs, Discrete Math. 159 (1996) 179-189, doi: 10.1016/0012-365X(95)00109-A.
- [5] E. Prisner, Graph Dynamics (Longman, 1995).
- [6] E. Prisner, Hereditary clique-Helly graphs, J. Combin. Math. Combin. Comput. 14 (1993) 216-220.
- [7] W.D. Wallis and G.H. Zhang, On maximal clique irreducible graphs, J. Combin. Math. Combin. Comput. 8 (1990) 187-193.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1407