PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 28 | 2 | 189-218
Tytuł artykułu

The chromatic equivalence class of graph $\overline{B_{n-6,1,2}}$

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
By h(G,x) and P(G,λ) we denote the adjoint polynomial and the chromatic polynomial of graph G, respectively. A new invariant of graph G, which is the fourth character R₄(G), is given in this paper. Using the properties of the adjoint polynomials, the adjoint equivalence class of graph $B_{n-6,1,2}$ is determined, which can be regarded as the continuance of the paper written by Wang et al. [J. Wang, R. Liu, C. Ye and Q. Huang, A complete solution to the chromatic equivalence class of graph $\overline{B_{n-7,1,3}}$, Discrete Math. (2007), doi: 10.1016/j.disc.2007.07.030]. According to the relations between h(G,x) and P(G,λ), we also simultaneously determine the chromatic equivalence class of $\overline{B_{n-6,1,2}}$ that is the complement of $B_{n-6,1,2}$.
Wydawca
Rocznik
Tom
28
Numer
2
Strony
189-218
Opis fizyczny
Daty
wydano
2008
otrzymano
2006-11-30
poprawiono
2008-02-26
zaakceptowano
2008-02-28
Twórcy
  • Department of Mathematics and Information Science, Qinghai Normal University, Xining, Qinghai 810008, P.R. China
  • College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
  • College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
autor
  • Department of Mathematics and Information Science, Qinghai Normal University, Xining, Qinghai 810008, P.R. China
autor
  • Department of Mathematics and Information Science, Qinghai Normal University, Xining, Qinghai 810008, P.R. China
Bibliografia
  • [1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (North-Holland, Amsterdam, 1976).
  • [2] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little and M.D. Hendy, Two invariants for adjointly equivalent graphs, Australasian J. Combin. 25 (2002) 133-143.
  • [3] F.M. Dong, K.L. Teo, C.H.C. Little and M.D. Hendy, Chromaticity of some families of dense graphs, Discrete Math. 258 (2002) 303-321, doi: 10.1016/S0012-365X(02)00355-2.
  • [4] Q.Y. Du, The graph parameter π (G) and the classification of graphs according to it, Acta Sci. Natur. Univ. Neimonggol 26 (1995) 258-262.
  • [5] B.F. Huo, Relations between three parameters A(G), R(G) and D₂(G) of graph G (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 2 (1998) 1-6.
  • [6] K.M. Koh and K.L. Teo, The search for chromatically unique graphs, Graphs and Combin. 6 (1990) 259-285, doi: 10.1007/BF01787578.
  • [7] K.M. Koh and K.L. Teo, The search for chromatically unique graphs-II, Discrete Math. 172 (1997) 59-78, doi: 10.1016/S0012-365X(96)00269-5.
  • [8] R.Y. Liu, Several results on adjoint polynomials of graphs (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 1 (1992) 1-6.
  • [9] R.Y. Liu, On the irreducible graph (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 4 (1993) 29-33.
  • [10] R.Y. Liu and L.C. Zhao, A new method for proving uniqueness of graphs, Discrete Math. 171 (1997) 169-177, doi: 10.1016/S0012-365X(96)00078-7.
  • [11] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172 (1997) 85-92, doi: 10.1016/S0012-365X(96)00271-3.
  • [12] J.S. Mao, Adjoint uniqueness of two kinds of trees (in Chinese), The thesis for Master Degree (Qinghai Normal University, 2004).
  • [13] R.C. Read and W.T. Tutte, Chromatic Polynomials, in: L.W. Beineke, R.T. Wilson (Eds), Selected Topics in Graph Theory III (Academiv Press, New York, 1988) 15-42.
  • [14] S.Z. Ren, On the fourth coefficients of adjoint polynomials of some graphs (in Chinese), Pure and Applied Math. 19 (2003) 213-218.
  • [15] J.F. Wang, R.Y. Liu, C.F. Ye and Q.X. Huang, A complete solution to the chromatic equivalence class of graph $\overline{B_{n-7,1,3}}$, Discrete Math. 308 (2008) 3607-3623.
  • [16] C.F. Ye, The roots of adjoint polynomials of the graphs containing triangles, Chin. Quart. J. Math. 19 (2004) 280-285.
  • [17] H.X. Zhao, Chromaticity and Adjoint Polynomials of Graphs, The thesis for Doctor Degree (University of Twente, 2005). The Netherlands, Wöhrmann Print Service (available at http://purl.org/utwente/50795)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1401
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.