ON DISTANCE LOCAL CONNECTIVITY AND VERTEX DISTANCE COLOURING

Přemysl Holub

Department of Mathematics
University of West Bohemia and Institute for Theoretical Computer Science (ITI), Charles University
Univerzitní 22, 306 14 Pilsen, Czech Republic

e-mail: holubpre@kma.zcu.cz

Abstract

In this paper, we give some sufficient conditions for distance local connectivity of a graph, and a degree condition for local connectivity of a k-connected graph with large diameter. We study some relationships between t-distance chromatic number and distance local connectivity of a graph and give an upper bound on the t-distance chromatic number of a k-connected graph with diameter d.

Keywords: degree condition, distance local connectivity, distance chromatic number.

2000 Mathematics Subject Classification: 05C15, 05C75.

1. Introduction

By a graph we mean a simple undirected graph. We use [2] for terminology and notation not defined here. Let dist$_G$(x, y) denote the distance between vertices x and y in G. An x, y-path is a path between vertices x and y in G. Let d = max dist$_G$(xy) : x, y ∈ V(G) denote the diameter of G. An x, y-path P is called diameter-path, if dist$_G$(x, y) = d and |E(P)| = d. Let d$_G$(x) denote the degree of a vertex x in G, δ(G) the minimum degree of G and ∆(G) the maximum degree of G. For a nonempty set U ⊆ V(G), the induced subgraph on U is denoted by $\langle U \rangle$. For a nonempty

*Research Supported by Grant No. 1M0021620808 of the Czech Ministry of Education.
set $A \subset V(G)$, $G - A$ denotes the subgraph of G that we obtain by deleting all vertices of A and all edges adjacent to at least one vertex of A. Let $\sigma_k(G) = \min\{\sum_{i=1}^k d_G(x_i)\mid \{x_1, \ldots, x_k\} \subset V(G), \text{ independent}\}$. The square of a graph G, denoted by G^2, is the graph in which $V(G^2) = V(G)$ and $E(G^2) = E(G) \cup \{\{u, v\}\mid \text{dist}_G(u, v) = 2\}$.

Let $N_G(x) = \{y \in V(G), xy \in E(G)\}$, let $N_G[x] = N_G(x) \cup \{x\}$. The set $N_G(x)$ is called the neighbourhood of the first type of x in G. We say that x is a locally connected vertex of G, if $\langle N_G(x) \rangle$ is connected. We say that G is a locally connected graph, if every vertex of G is locally connected. Chartrand and Pippert [3] proved the following Ore-type condition for local connectivity of graphs:

Theorem A [3]. Let G be a connected graph of order n. If

$$d_G(u) + d_G(v) > \frac{4}{3}(n - 1)$$

for every pair of vertices $u, v \in V(G)$, then G is locally connected.

Let $N_2(x)$ be a subgraph induced by the set of edges uv, such that

$$\min\{\text{dist}_G(x, u), \text{dist}_G(x, v)\} = 1.$$

The subgraph $N_2(x)$ is called the neighbourhood of the second type of x in G. We say that x is an N_2-locally connected vertex of G, if $N_2(x)$ is connected.

We say that G is N_2-locally connected, if every vertex of G is N_2-locally connected.

Now define the distance neighbourhood of the first type of a vertex of G as in [5]. Let m be a positive integer and let x be an arbitrary vertex of a graph G. The N_1^m-neighbourhood of x in G, denoted by $N_1^m(x)$, is the set of all vertices $y \in V(G), y \neq x$, such that $\text{dist}_G(x, y) \leq m$. Let $N_1^m[x] = N_1^m(x) \cup \{x\}$. A vertex x is called N_1^m-locally connected if $\langle N_1^m(x) \rangle$ is connected. A graph G is said to be N_1^m-locally connected if every vertex of G is N_1^m-locally connected.

The distance local connectivity of the second type is analogously defined as the neighbourhood of the second type. Let m be a positive integer and let x be an arbitrary vertex of a graph G. The N_2^m-neighbourhood of x, denoted by $N_2^m(x)$, is the subgraph induced by all edges $\{u, v\}$ of $G, u \neq x, v \neq x$, with $\min\{\text{dist}_G(x, u), \text{dist}_G(x, v)\} \leq m$. We say that x is N_2^m-locally connected in G if $N_2^m(x)$ is connected. A graph G is said to be N_2^m-locally connected if every vertex of G is N_2^m-locally connected in G.
Let t be a positive integer. The t-distance chromatic number of a graph G, denoted $\chi^{(t)}(G)$, is the minimum number of colours required to colour all vertices of G in such a way that any two vertices x, y with $\text{dist}_G(x, y) \leq t$ have distinct colours. Let $\chi(x)$ denote the colour of a vertex x in G. Recall that the vertex distance colouring was introduced by Kramer and Kramer in [7] and [8]. In the 90’s, several results on vertex distance colourings were presented, cf. Baldí in [1], Skupień in [11], Chen et al. in [4].

The following result was proved by Jendrol’ and Skupień in [6].

Theorem B [6]. Given a planar graph G, let $D = \max\{8, \Delta(G)\}$. Then the t-distance chromatic number of G is

$$\chi^{(t)}(G) \leq 6 + \frac{3D + 3}{D - 2}((D - 1)^{t-1} - 1).$$

Madaras and Marcinová strengthened this condition in [9].

Theorem C [9]. Let G be a planar graph, let $D = \max\{8, \Delta(G)\}$. Then

$$\chi^{(t)}(G) \leq 6 + \frac{2D + 12}{D - 2}((D - 1)^{t-1} - 1).$$

2. **Distance Local Connectivity of a Graph in k-Connected Graphs**

The concept of the local connectivity of a graph was introduced in 1970’s. Ryjáček used the concept of the local connectivity of a vertex in [10] for local completing in his closure concept for claw-free graphs. This closure concept gave a solution for several hamiltonian problems. A degree condition is one of the easily verified conditions. Chartrand and Pippert in [3] proved a degree condition for the local connectivity of connected graphs (see Theorem A). The same degree condition can guarantee the local connectivity of any vertex of a connected locally connected graph. In this chapter, degree conditions for the local connectivity of a k-connected graph with a large diameter will be presented as a strengthening of the result of Chartrand and Pippert. Holub and Xiong in [5] proved degree conditions for distance local connectivity of 2-connected graphs. As a strengthening of this condition, degree conditions for distance local connectivity of a k-connected graph with a large diameter will be shown, too.
Theorem 1. Let \(k \geq 2 \) be an integer, \(G \) be a \(k \)-connected graph of order \(n \). Let \(d \) be the diameter of \(G \), let \(d \geq 5 \). If

\[
d_G(u) + d_G(v) > \frac{4}{3}(n - kd + 5k - 3)
\]

for every pair of vertices \(u, v \in V(G) \), then \(G \) is locally connected.

Theorem 2. Let \(k \geq 2 \) be an integer, \(G \) be a \(k \)-connected graph of order \(n \). Let \(d \) be the diameter of \(G \), \(m \) be an integer such that \(2 \leq m \leq \frac{1}{2}(d - 7) \). If

1. \(\sigma_t \geq n - kd - 2mk + 6k - t \), where \(t = \frac{2}{3}m + 1 \) if \(m \equiv 0 \) (mod 3),
2. \(\sigma_t \geq n - kd - 2mk + 6k - 2 - t \), where \(t = \frac{2}{3}(m-1) + 3 \) if \(m \equiv 1 \) (mod 3),
3. \(\sigma_t \geq n - kd + 2mk + 4k - 1 - t \), where \(t = \frac{2}{3}(m-2) + 3 \) if \(m \equiv 2 \) (mod 3),

then \(G \) is \(N^m_1 \)-locally connected.

Before proofs of these two theorems, some auxiliary statements will be shown.

Lemma 1. Let \(k \geq 2 \) be an integer, \(G \) be a \(k \)-connected graph and \(x \) be an arbitrary vertex of \(G \). Let \(d \) be the diameter of \(G \), let \(d \geq 5 \). If \(x \) does not belong to any diameter-path in \(G \), then there are at least \(kd - 5k + 2 \) vertices \(y \) such that \(\text{dist}_G(x, y) > 2 \).

Proof. Let \(P \) denote a diameter-path in \(G \), let \(u, v \) be the end vertices of \(P \). Since \(G \) is \(k \)-connected, there are at least \(k \) vertex-disjoint \(u, v \)-paths in \(G \) by Menger’s theorem. Choose \(P_1, \ldots, P_k \) with minimum sum of their lengths. Note that \(|E(P_i)| \geq d \), \(i = 1, \ldots, k \). Now it will be shown that there are at least \(d - 3 \) vertices at the required distance from \(x \) on each of \(P_i \), \(i = 1, \ldots, k \). Let \(M_j = \{ y \in P_j | \text{dist}_G(x, y) \leq 2 \} \), \(j = 1, \ldots, k \). For each path of \(P_i \), \(i = 1, \ldots, k \), there are two following cases:

Case 1. If \(M_j = \emptyset \), then there are at least \(d + 1 \) vertices at the required distance from \(x \) on \(P_j \).

Case 2. If \(M_j \neq \emptyset \), then let \(a_j \in M_j \) such that \(\text{dist}_G(a_j, u) = \min_{m \in M_j} \text{dist}_G(m, u) \) and let \(b_j \in M_j \) such that \(\text{dist}_G(b_j, v) = \min_{m \in M_j} \text{dist}_G(m, v) \). Since \(x \) does not belong to any diameter path, we have

\[
\text{dist}_G(u, a_j) + \text{dist}_G(a_j, x) + \text{dist}_G(x, b_j) + \text{dist}_G(b_j, v) \geq d + 1.
\]
Since \(\text{dist}_G(a_j, x) \leq 2 \) and \(\text{dist}_G(b_j, x) \leq 2 \), we obtain

\[
\text{dist}_G(u, a_j) + \text{dist}_G(b_j, v) \geq d - 3.
\]

Hence there are at least \(d - 3 \) vertices at the required distance from \(x \) on \(P_j \).

On the paths \(P_i, i = 1, \ldots, k \), there are at least \(k(d - 3) \) vertices at the required distance from \(x \) in \(G \). Since \(u \) and \(v \) can be counted only once, there are at least \(k(d - 5) + 2 \) different vertices at the required distance from \(x \) in \(G \).

Proof of Theorem 1. Suppose \(G \) is not locally connected. Then there is a vertex \(x \) such that \(x \) is not locally connected in \(G \). There are at least two components of \(\langle N_G(x) \rangle \). Let \(G_1 \) denote a smallest component of \(\langle N_G(x) \rangle \) and let \(G_2 \) be the union of all the other components of \(\langle N_G(x) \rangle \). Let \(g_1 = |V(G_1)| \), let \(g_2 = |V(G_2)| \). Let \(Z = \{ y \in V(G); \text{dist}_G(x, y) = 2 \} \), let \(z = |Z| \). Let \(p = |\{ y \in V(G); \text{dist}_G(x, y) > 2 \}|. \)

Case 1. Suppose that \(x \) does not belong to any diameter-path in \(G \). By Lemma 1, the number \(p \geq kd - 5k + 2 \). Clearly \(n = g_1 + g_2 + z + p + 1 \). Choose arbitrary vertices \(u \) and \(v \) such that \(u \in V(G_1) \) and \(v \in V(G_2) \). By the assumptions of Theorem 1

\[
d_G(x) + d_G(u) > \frac{4}{3}(n - kd + 5k - 3).
\]

Since \(d_G(x) = g_1 + g_2 \) and \(d_G(u) \leq g_1 + z = n - 1 - p - g_2 \leq n - 1 - g_2 - kd + 5k - 2 \), we obtain

\[
g_1 + g_2 + n - g_2 - 1 - kd + 5k - 2 > \frac{4}{3}(n - kd + 5k - 3).
\]

Clearly \(g_1 > \frac{1}{3}(n - kd + 5k - 3) \) and \(g_2 > \frac{1}{3}(n - kd + 5k - 3) \) since \(g_2 \geq g_1 \). Therefore

\[
z < \frac{1}{3}(n - kd + 5k - 3).
\]

For vertices \(u \) and \(v \)

\[
d_G(u) + d_G(v) \leq g_1 + z + g_2 + z < \frac{4}{3}(n - kd + 5k - 3),
\]

a contradiction.
Case 2. Suppose that \(x \) belongs to a diameter-path \(P \). Let \(e, f \) be the end vertices of \(P \). Since \(G \) is \(k \)-connected, there are at least \(k \) vertex-disjoint \(e, f \)-paths in \(G \). Choose \(P_1, \ldots, P_k \) with a minimum sum of their lengths. For each of \(P_i, i = 1, \ldots, k \) the following cases can happen.

Subcase 2.1. \(V(P_i) \cap Z = \emptyset \). Then there are at least \(d + 1 \) vertices on \(P_i \) at distance at least 3 from \(x \) in \(G \).

Subcase 2.2. \(V(P_i) \cap (V(G_1) \cup V(G_2)) = \emptyset \), but \(V(P_i) \cap Z \neq \emptyset \). Let \(d_i = |V(P_i) \cap Z| \). If \(d_i \leq 4 \), then there are at least \(d - 3 \) vertices on \(P_i \) at distance at least 3 from \(x \) in \(G \).

Now suppose that \(d_i \geq 5 \). If there is a vertex \(w \in V(G_1) \cup V(G_2) \) such that \(w \) is adjacent to every vertex of \(V(P_i) \cap Z \), then there are at least \(d - 2 \) vertices at distance at least 3 from \(x \) in \(G \) since \(\text{dist}_G(e, f) \geq d \). If none of the vertices of \(V(G_1) \cup V(G_2) \) is adjacent to every vertex of \(V(P_i) \cap Z \), then

\[
\begin{align*}
&d_G(u) \leq g_1 + z - (d_i - 3) \leq g_1 + z - 1, \quad \forall u \in V(G_1), \\
&d_G(v) \leq g_2 + z - (d_i - 3) \leq g_2 + z - 1, \quad \forall v \in V(G_2).
\end{align*}
\]

Subcase 2.3. \(V(P_i) \cap (V(G_1) \cup V(G_2)) \neq \emptyset \). Let \(d_i^1 = |V(P_i) \cap V(G_1)| \), \(d_i^2 = |V(P_i) \cap V(G_2)| \) and \(d_i = |V(P_i) \cap Z| \). Note that \(d_i \geq 2 \). The following two possibilities have to be considered.

(i) \(d_i^1 = 0 \) or \(d_i^2 = 0 \). Up to symmetry, suppose that \(d_i^2 = 0 \). If \(d_i^1 = 1 \) and \(d_i = 2 \), then there are at least \(d - 3 \) vertices on \(P_i \) at distance at least 3 from \(x \) in \(G \).

Now suppose that \(d_i^1 = 1 \) and \(d_i > 2 \). If there is a vertex \(w \in V(G_1) \) such that \(w \) is adjacent to every vertex of \(V(P_i) \cap Z \), then there are at least \(d - 2 \) vertices at distance at least 3 from \(x \) in \(G \) since \(\text{dist}_G(e, f) \geq d \). If there is no vertex \(w \in V(G_1) \) adjacent to every vertex of \(V(P_i) \cap Z \), then

\[
\begin{align*}
&d_G(u) \leq g_1 + z - (d_i - 2) \leq g_1 + z - 1, \quad \forall u \in V(G_1).
\end{align*}
\]

Now suppose that \(d_i^1 > 1 \). If there is a vertex \(w \in V(G_1) \) such that \(w \) is adjacent to every vertex of \(V(P_i) \cap Z \), then there are at least \(d - 2 \) vertices at distance at least 3 from \(x \) in \(G \) since \(\text{dist}_G(e, f) \geq d \). If there is no vertex \(w \in V(G_1) \) adjacent to every vertex of \(V(P_i) \cap Z \), then

\[
\begin{align*}
&d_G(u) \leq g_1 + z - (d_i^1 - 2) - (d_i - 1) \leq g_1 + z - 1, \quad \forall u \in V(G_1).
\end{align*}
\]
On Distance Local Connectivity and ... 215

(ii) $d_i^1 > 0$ and $d_i^2 > 0$. If P_i is a diameter-path containing x, then there are at least $d - 4$ vertices on P_i at distance at least 3 from x in G. If P_i does not contain x, then $d_i \geq 3$. If there is a vertex $w \in V(G_1) \cup V(G_2)$ such that w is adjacent to every vertex of $V(P_i) \cap Z$, then there are at least $d - 2$ vertices at distance at least 3 from x in G since $\text{dist}_G(e, f) \geq d$. If there is no vertex $w \in V(G_1) \cup V(G_2)$ adjacent to every vertex of $V(P_i) \cap Z$, then

\[
\begin{align*}
 d_G(u) &\leq g_1 + z - (d_i - 2) \leq g_1 + z - 1, \quad \forall u \in V(G_1), \\
 d_G(v) &\leq g_2 + z - (d_i - 2) \leq g_2 + z - 1, \quad \forall v \in V(G_2).
\end{align*}
\]

Let l_1 denote the number of such the paths P_1, \ldots, P_k, for which one of the following conditions is satisfied

- $V(P_i) \cap V(Z) \neq \emptyset, V(P_i) \cap (V(G_1) \cup V(G_2)) = \emptyset, d_i \geq 5$ and there is no vertex $w \in V(G_1) \cup V(G_2)$ adjacent to every vertex of $V(P_i) \cap Z$,
- $V(P_i) \cap (V(G_1) \cup V(G_2)) \neq \emptyset, d_i^1 = 1, d_i^2 = 0, d_i > 2$ and there is no vertex $w \in V(G_1)$ adjacent to every vertex of $V(P_i) \cap Z$,
- $V(P_i) \cap (V(G_1) \cup V(G_2)) \neq \emptyset, d_i^1 > 1, d_i^2 = 0$ and there is no vertex $w \in V(G_1)$ adjacent to every vertex of $V(P_i) \cap Z$,
- $V(P_i) \cap (V(G_1) \cup V(G_2)) \neq \emptyset, d_i^1 d_i^2 \neq 0, x \notin V(P_i)$ and there is no vertex $w \in V(G_1) \cup V(G_2)$ adjacent to every vertex of $V(P_i) \cap Z$.

Let l_2 denote the number of such the paths P_1, \ldots, P_k, for which one of the following conditions is satisfied

- $V(P_i) \cap V(Z) \neq \emptyset, V(P_i) \cap (V(G_1) \cup V(G_2)) = \emptyset, d_i \geq 5$ and there is no vertex $w \in V(G_1) \cup V(G_2)$ adjacent to every vertex of $V(P_i) \cap Z$,
- $V(P_i) \cap (V(G_1) \cup V(G_2)) \neq \emptyset, d_i^1 = 0, d_i^2 = 1, d_i > 2$ and there is no vertex $w \in V(G_2)$ adjacent to every vertex of $V(P_i) \cap Z$,
- $V(P_i) \cap (V(G_1) \cup V(G_2)) \neq \emptyset, d_i^1 > 0, d_i^2 = 0$ and there is no vertex $w \in V(G_2)$ adjacent to every vertex of $V(P_i) \cap Z$,
- $V(P_i) \cap (V(G_1) \cup V(G_2)) \neq \emptyset, d_i^1 d_i^2 \neq 0, x \notin V(P_i)$ and there is no vertex $w \in V(G_1) \cup V(G_2)$ adjacent to every vertex of $V(P_i) \cap Z$.

Let $l = l_1 + l_2$. Then there are at least $kd - 5k + 2 - l - 1$ vertices at distance at least 3 from x in G and

\[
\begin{align*}
 d_G(u) &\leq g_1 + z - l_1, \quad \forall u \in V(G_1), \\
 d_G(v) &\leq g_2 + z - l_2, \quad \forall v \in V(G_2).
\end{align*}
\]
Suppose that $l_2 \geq l_1$. By the assumptions, for every $u \in V(G_1)$

$$d_G(x) + d_G(u) > \frac{4}{3}(n - kd + 5k - 3).$$

Since $d_G(x) = g_1 + g_2$ and $d_G(u) \leq g_1 + z - l_1 \leq n - 1 - g_2 - l_1 - kd + 5k - 2 + l$,
we have

$$g_1 + g_2 + n - g_2 - l_1 - kd + 5k - 3 + l > \frac{4}{3}(n - kd + 5k - 3).$$

Clearly

$$g_1 > \frac{1}{3}(n - kd + 5k - 3) + l_1 - l$$
and

$$g_2 > \frac{1}{3}(n - kd + 5k - 3) + l_1 - l,$$

since $g_2 \geq g_1$. Thus

$$z < \frac{1}{3}(n - kd + 5k - 3) + 2l_1 - l.$$

For vertices u and v, it holds that

$$d_G(u) + d_G(v) \leq g_1 + g_2 + 2z - l_1 - l_2 < \frac{4}{3}(n - kd + 5k - 3) + l_1 - l_2,$$
a contradiction, since $l_2 \geq l_1$. Hence suppose that $l_1 > l_2$. Then we get

$$g_1 > \frac{1}{3}(n - kd + 5k - 3) + l_1 - l \geq \frac{1}{3}(n - kd + 5k - 3) - l_1.$$

Thus

$$g_2 > \frac{1}{3}(n - kd + 5k - 3) + l_1 - l,$$

$$z < \frac{1}{3}(n - kd + 5k - 3) + l - l_1 + l_1 - l = \frac{1}{3}(n - kd + 5k - 3).$$

Then

$$d_G(u) + d_G(v) \leq g_1 + g_2 + 2z - l_1 - l_2 < \frac{4}{3}(n - kd + 5k - 3) + 1.$$
Hence
\[d_G(u) + d_G(v) \leq \frac{4}{3}(n - kd + 5k - 3), \]
a contradiction. \(\blacksquare \)

The following example shows that the conditions of Theorem 1 are sharp.

Example. Let \(K_1, \ldots, K_{k_1} \) be \(k_1 \) cliques of order \(k \), let \(L_1, \ldots, L_{k_2} \) be \(k_2 \) cliques of order \(k \). Let \(K_0, L_0 \) be two cliques of order \(l_1 > 2k - 1 \), let \(M \) be a clique of order \(l_1 - k \). All considered cliques \(K_i, L_i \) are vertex-disjoint. Construct a graph \(G \) by joining a new vertex \(x \) with each vertex of \(K_0 \cup L_0 \), a new vertex \(u \) with each vertex of \(K_{k_1} \) and a new vertex \(v \) with each vertex of \(L_{k_2} \). Now join each vertex of \(K_i \) with each vertex of \(K_{i-1} \) for \(i = 1, \ldots, k_1 \), each vertex of \(L_i \) with each vertex of \(L_{i-1} \) for \(i = 1, \ldots, k_2 \) and each vertex of \(K_0 \cup L_0 \) with each vertex of \(M \). Clearly the prescribed graph \(G \) is \(k \)-connected and the vertex \(x \) is not locally connected. The diameter of \(G \) is \(d = k_1 + k_2 + 4 \). It holds that
\[n = 1 + 2l_1 + l_1 - k + (k_1 + k_2)k + 2 = 3l_1 + (d - 5)k + 3. \]
Thus
\[3l_1 = n - kd + 5k - 3. \]
Furthermore
\[d_G(x) = 2l_1, \]
\[d_G(y) = 2l_1, \quad \forall y \in K_0, \]
\[d_G(z) = 2l_1, \quad \forall z \in L_0. \]
Hence for every pair \(a, b \) of vertices of \(N_G[x] \) holds that
\[d_G(a) + d_G(b) = 4l_1 = \frac{4}{3}(n - kd + 5k - 3). \]
and \(x \) is not locally connected.

The following lemma is a proposition analogous to Lemma 1 for the \(N_1^n \)-local connectivity of a vertex of a graph.

Lemma 2. Let \(k \geq 2 \) be an integer, \(G \) be a \(k \)-connected graph. Let \(d \) be the diameter of \(G \) and \(m \leq \frac{1}{2}(d - 1) \) be an integer. Then, for each vertex \(x \) of \(G \), there are at least \(kd - 2km + 2 \) vertices at distance at least \(m \) from \(x \) in \(G \).
Proof. Let P denote a diameter-path in G, let u, v be the end vertices of P. Since G is k-connected, there are at least k vertex-disjoint u,v-paths in G by Menger’s theorem. Choose P_1, \ldots, P_k with minimum sum of their lengths. Note that $|E(P_i)| \geq d$, $i = 1, \ldots, k$. Now it will be shown that there are at least $d - 2m + 2$ vertices at the required distance from x on each of P_i, $i = 1, \ldots, k$. Let $M_j = \{ y \in P_j | \text{dist}_G(x, y) \leq m - 1 \}$, $j = 1, \ldots, k$.

For each path of P_i, $i = 1, \ldots, k$, there are two following cases:

Case 1. If $M_i = \emptyset$, then there are at least $d + 1$ vertices at the required distance from x on P_i.

Case 2. If $M_i \neq \emptyset$, then let $a_i \in M_i$ such that $\text{dist}_G(a_i, u) = \min_{m \in M_i} \text{dist}_G(m, u)$ and let $b_i \in M_i$ such that $\text{dist}_G(b_i, v) = \min_{m \in M_i} \text{dist}_G(m, v)$. Clearly

$$\text{dist}_G(u, a_i) + \text{dist}_G(a_i, x) + \text{dist}_G(x, b_i) + \text{dist}_G(b_i, v) \geq d.$$

Since $\text{dist}_G(a_i, x) \leq m - 1$ and $\text{dist}_G(b_i, x) \leq m - 1$, we have

$$\text{dist}_G(u, a_i) + \text{dist}_G(b_i, v) \geq d - 2m + 2.$$

Hence there are at least $d - 2m + 2$ vertices at the required distance from x on P_i.

On the paths P_i, $i = 1, \ldots, k$ there are at least $k(d - 2m + 2)$ vertices at the required distance from x in G. Since u and v can be counted only once, there are at least $kd - 2km + 2$ different vertices at the required distance from x in G.

Let C be a cycle, $x \in V(C)$ and \bar{C} be an orientation of C. Let $x^{-(i)}$ denote the i-th predecessor of x on C and $x^{+(i)}$ denote the i-th successor of x on C in the orientation \bar{C}.

Lemma 3 [5]. Let G be a 2-connected graph, $x \in V(G)$, and m be a positive integer. If x is not N^m_1-locally connected, then there is an induced cycle C of length at least $2m + 2$ such that, in an orientation of C,

- $\text{dist}_G(x^{-(i)}, x) = i$ and $\text{dist}_G(x^{+(i)}, x) = i$, $i = 1, \ldots, m$,
- $\text{dist}_G(y, x) > m$, for every $y \in V(C) \setminus \{x, x^{-(1)}, \ldots, x^{-(m)}, x^{+(1)}, \ldots, x^{+(m)}\}$.
On Distance Local Connectivity and ...

The following consequence proved by Holub and Xiong we use in the proof of Theorem 2.

Corollary 1 [5]. Let \(m \geq 2 \) be an integer, \(G \) a 2-connected graph. If \(x \in V(G) \) is not \(N_1^m \)-locally connected, then there is a set \(M \subset V(G) \) such that

1. \(M \) is independent in \((G - x)^2\), \(M \subset N_1^{m+1}(x) \) and \(|M| \geq \frac{2}{3} m + 1\), if \(m \equiv 0 \pmod{3} \),
2. \(M \) is independent in \((G - N_G[x])^2\), \(M \subset (N_1^{m+1}(x) \setminus N_1^1(x)) \) and \(|M| \geq \frac{2}{3} (m - 1) + 1\), if \(m \equiv 1 \pmod{3} \),
3. \(M \) is independent in \(G^2 \), \(M \subset N_1^{m}[x] \) and \(|M| \geq \frac{2}{3} (m - 2) + 2\), if \(m \equiv 2 \pmod{3} \).

Proof of Theorem 2. Suppose that \(G \) is not \(N_1^m \)-locally connected. Then there is a vertex \(x \in V(G) \) such that \(x \) is not \(N_1^m \)-locally connected in \(G \). Hence \(\langle N_1^m(x) \rangle \) consists of at least two components. Let \(G_1 \) denote arbitrary component of \(\langle N_1^m(x) \rangle \), let \(G_2 \) denote the union of all the other components of \(\langle N_1^m(x) \rangle \).

Case 1. \(m \equiv 0 \pmod{3} \). By Corollary 1 case (1), there is a set \(M \subset N_1^{m+1}(x) \) such that \(|M| = \frac{2}{3} m + 1\) and \(M \) is independent in \((G - x)^2\). Let \(t = |M| \). Using Lemma 3, the set \(M \) can be chosen in the following way: \(M = \{x_1, x_2, \ldots, x_t\} \), where \(x_{2j-1} = x^{-(3j-2)} \), \(x_{2j} = x^{+(3j-2)} \), \(j = 1, \ldots, \frac{m}{3} \), \(x_t = x^{+(m+1)} \). Let \(A = \{y \in V(G) \mid \text{dist}_G(x, y) > m + 2\} \), let \(a = |A| \). By Lemma 2, the number \(a \geq kd - 2(m + 3)k + 2 \). Since \(M \) is independent in \((G - x)^2\), we have, for every pair \(u, v \in M \setminus \{x\} \),

\[N_{G - x}(u) \cap N_{G - x}(v) = \emptyset. \]

Since \(x \) is adjacent to at most two vertices of \(M \), we obtain

\[\sum_{x_i \in M} d_G(x_i) \leq (n - 1) - t - a + 2 = n - t - a + 1. \]

Since \(a \geq kd - 2(m + 3)k + 2 \), we have

\[\sum_{x_i \in M} d_G(x_i) \leq n - t - kd + 2mk + 6k - 1, \]

a contradiction.
Case 2. $m \equiv 1 \pmod{3}$. By Corollary 1 case (2), there is a set $M \subset N_1^{m+1}(x)$ such that $|M| = \frac{2}{3}(m-1)+1$ and M is independent in $(G - N_G[x])^2$. Let $t = |M|$. Using Lemma 3, the set M can be chosen in the following way: $M = \{x_1, x_2, \ldots, x_t\}$, where $x_{2j-1} = x^{-(3j-1)}, \ x_{2j} = x^{+(3j-1)}, \ j = 1, \ldots, \frac{m-1}{3}, \ x_t = x^{+(m+1)}$. Let $A = \{y \in V(G) \mid \text{dist}_G(x, y) > m + 1\}$, let $a = |A|$. By Lemma 2, the number $a \geq kd - 2(m + 3)k + 2$. Since M is independent in $(G - N_G[x])^2$, we have, for every pair $u, v \in M$,

$$N_G(u) \cap N_G(v) = \emptyset.$$

Since each vertex of $N_G(x)$ is adjacent to at most one vertex of M, we obtain

$$\sum_{x_i \in M} d_G(x_i) \leq (n - 1) - t - a.$$

Since $a \geq kd - 2(m + 3)k + 2$, we have

$$\sum_{x_i \in M} d_G(x_i) \leq n - t - kd + 2mk + 6k - 3,$$

a contradiction.

Case 3. $m \equiv 2 \pmod{3}$. By Corollary 1 case (3), there is a set $M \subset N_1^m(x)$ such that $|M| = \frac{2}{3}(m - 2) + 2$ and M is independent in G^2. Let $A = \{y \in V(G) \mid \text{dist}_G(x, y) > m + 1\}$, let $a = |A|$. By Lemma 2, the number $a \geq kd - 2(m + 2)k + 2$. Since M is independent in G^2, we have, for every pair $u, v \in M$,

$$N_G(u) \cap N_G(v) = \emptyset.$$

Let $t = |M|$. Hence

$$\sum_{x_i \in M} d_G(x_i) \leq n - t - a.$$

Since $a \geq kd - 2(m + 2)k + 2$, we obtain

$$\sum_{x_i \in M} d_G(x_i) \leq n - t - kd + 2mk + 4k - 2,$$

a contradiction. \qed
3. Vertex Distance Colouring

There are several results on t-distance chromatic number for planar graphs. In this paragraph, results on t-distance chromatic number in k-connected, not necessary planar, graphs are presented. Moreover, the relations between distance local connectivity and t-distance chromatic number in 2-connected graphs are given. Main results of this section are the following theorems.

Theorem 3. Let G be a k-connected graph of order n, d be the diameter of G. Let $t < d$ be a positive integer. Then the distance-chromatic number

$$\chi^{(t)}(G) \leq \begin{cases}
 n - 1 & \text{if } t = d - 1, \\
 n - (d - t - 2)k - 2 & \text{if } t < d - 1.
\end{cases}$$

Theorem 4. Let G be a 2-connected graph of order n, let t, k be positive integers. If

$$\chi^{(t)}(G) > n - (2k - 1)(t + 1),$$

then G is N^m_1-locally connected, where $m = k(t + 1) - 1$.

Theorem 5. Let G be a 2-connected graph of order n, k be a positive integer and t be an even positive integer. If

$$\chi^{(t)}(G) > n - 2k(t + 1),$$

then G is N^m_2-locally connected, where $m = k(t + 1) + \frac{t}{2} - 1$.

The distance local connectivity number of a 2-connected graph G, denoted $dlc(G)$, is the smallest positive integer m for which G is N^m_1-locally connected. Since G is 2-connected, the number $dlc(G)$ is well-defined. Note that local connectivity of a graph is the N^1_1-local connectivity. The following statement is a straightforward consequence of Theorem 4.

Corollary 2. Let G be a 2-connected graph, let t be a positive integer. If $dlc(G) = m$, then

$$\chi^{(t)}(G) \leq n - (k - 1)(t + 1),$$

where $k = \lceil \frac{2m}{t+1} \rceil$.

Proof of Theorem 3. Let u, v denote the end vertices of a diameter path in G. Since G is k-connected, there are at least k vertex-disjoint u, v-paths P_1, \ldots, P_k in G by Menger’s theorem. Since $\text{dist}_G(u, v) = d$, each of P_i, $i = 1, \ldots, k$, has length at least d. Let $u_{i,j}$ denote a vertex on P_i such
that \(\text{dist}_G(u, u_{i,j}) = j, i = 1, \ldots, k, j = 1, \ldots, d \). Since \(d > t \), there is at least one vertex \(u_{i,j} \) on \(P_i, i = 1, \ldots, k \), including the end-vertex \(v \), such that \(j > t, j = t + 1, \ldots, d \). If \(d - t = 1 \), then \(u_{i,t+1} = v \) for every \(i \in \{1, \ldots, k\} \).

We define colouring \(\chi \) of vertices of \(G \) in such a way that \(\chi(v) = \chi(u) \) and \(\chi(x) \neq \chi(y) \) for all pairs \(x, y \in V(G) \setminus \{u, v\} \). Clearly \(\chi \) is a \(t \)-distance colouring of \(G \) and

\[
\chi^{(t)}(G) \leq n - 1.
\]

Suppose that \(d - t > 1 \). We define a colouring \(\chi \) of vertices of \(G \) in such a way that the vertices of \(N_1^{t+1}(u) \) have distinct colours in \(G \), \(\chi(u) = \chi(u_{i,t+1}) \) and \(\chi(v) = \chi(u_{i,d-t-1}) \) for some \(i \in \{1, \ldots, k\} \). Moreover, if \(d - t > 2 \), then, for every \(i \in \{1, \ldots, k\} \), \(\chi(u_{i,j+t+1}) = \chi(u_{i,j}) \), since \(\text{dist}_G(u_{i,j}, u_{i,j+t+1}) = t + 1, j = 1, \ldots, d - t - 2 \). Clearly \(\chi \) is a \(t \)-distance colouring of \(G \). Hence there are at least \(k(d - t - 2) + 2 \) vertices with previously used colours, implying that

\[
\chi^{(t)}(G) \leq n - k(d - t - 2) - 2.
\]

For the proofs of Theorem 4 and Theorem 5 we need some auxiliary statements. The following lemma is the analogue of Lemma 3.

Lemma 4. Let \(G \) be a 2-connected graph, \(x \in V(G) \) and \(m \) be a positive integer. If \(x \) is not \(N_2^m \)-locally connected, then there is an induced cycle \(C \) containing \(x \) of length at least \(2m + 3 \) such that, in an orientation of \(C \),

\[
\text{dist}_G(x^{-i}, x) = i \quad \text{and} \quad \text{dist}_G(x^{+i}, x) = i, \quad i = 1, \ldots, m + 1,
\]

Proof. The vertex \(x \) is not \(N_2^m \)-locally connected. The \(N_2^m \)-neighbourhood of a vertex \(x \) consists of at least two components \(G_1, G_2 \). Since \(G \) is 2-connected, there is a cycle \(C \) containing \(x \), such that \(x^{-1} \in G_1 \) and \(x^{+1} \in G_2 \) in an orientation of \(C \). Choose \(C \) shortest possible with this property. Since \(x \) is not \(N_2^m \)-locally connected, \(|V(C)| \geq 2m + 3 \). It is easy to see that \(C \) has the required property since otherwise there is a shorter cycle.

From the definition of a \(t \)-distance colouring we obtain the following clear observation.

Proposition 1. Let \(G \) be a 2-connected graph of order \(n \), let \(t \) be a positive integer, let \(d \) denote the diameter of \(G \). Then \(\chi^{(t)}(G) = n \) if and only if \(d \leq t \).
Corollary 3. Let G be a 2-connected graph of order n, let t be a positive integer. If $\chi^{(t)}(G) = n$, then G is N_1^t-locally connected.

Proof. Suppose that G is not N_1^t-locally connected, i.e., there is a vertex $x \in V(G)$ such that x is not N_1^t-locally connected in G. By Proposition 1, $d \leq t$. By Lemma 3, there is an induced cycle C in G of length at least $2t + 2$, which contradicts the fact that $d \leq t$.

Proof of Theorem 4. Suppose that G is not N_1^m-locally connected, i.e., there is a vertex x which is not N_1^m-locally connected. By Lemma 3 there is an induced cycle C containing x, such that $|V(C)| \geq 2m + 2$. Moreover $\text{dist}_G(x, x^{-i}) = \text{dist}_G(x, x^{+i}) = i$ for $i = 1, \ldots, m$. Since x is not N_1^m-locally connected, the cycle C can be chosen such that x^{-1} and x^{+1} belong to different components of $(N_1^m(x))$. Clearly $\text{dist}_G(x^{-i}, x^{-j}) = |i - j|$, for $i, j = 0, \ldots, m$ where $x^{-0} = x$.

We define a colouring χ of vertices of G in such a way that all the vertices x^{-0}, \ldots, x^{-t} have distinct colours, $\chi(x^{-i}) = \chi(x^{-i+t+1})$, $i = 0, \ldots, t$, since $|V(C)| \geq 2(t + 1)$. If $k > 1$, then $\chi(x^{-i+(j+1)(t+1)}) = \chi(x^{-i+(j-1)(t+1)})$ for $i = 0, \ldots, t$ and $j = 1, \ldots, 2k - 1$. All the remaining vertices of G will be coloured with distinct unused colours. Clearly χ is a t-vertex distance colouring in G.

We have coloured $2k(t + 1)$ vertices of C with only $t + 1$ colours. Since $m = k(t + 1) - 1$, we have coloured $2m + 2$ vertices of C with only $t + 1$ colours, implying that

$$\chi^{(t)}(G) \leq n - (2m + 2) + (t + 1) = n - (2k - 1)(t + 1),$$

a contradiction.

Proof of Theorem 5. We will use similar arguments as is the proof of Theorem 4. Suppose that G is not N_2^m-locally connected, i.e., there is a vertex x which is not N_2^m-locally connected. By Lemma 4 there is an induced cycle C containing x, such that $|V(C)| \geq 2m + 3$. Moreover $\text{dist}_G(x, x^{-i}) = \text{dist}_G(x, x^{+i}) = i$ for $i = 1, \ldots, m+1$. Since x is not N_2^m-locally connected, the cycle C can be chosen such that x^{-1} and x^{+1} belong to different components of $(N_2^m(x))$. Clearly $\text{dist}_G(x^{-i}, x^{-j}) = |i - j|$, for $i, j = 0, \ldots, m + 1$ where $x^{-0} = x$.

We define a colouring χ of vertices of G in such a way that all the vertices x^{-0}, \ldots, x^{-t} have distinct colours, $\chi(x^{-i}) = \chi(x^{-i+t+1})$, $i = 0, \ldots, t$,}
since \(|V(C)| \geq 2(t+1)|. If \(k > 1\), then \(\chi(x^{-(i+j(t+1)}) = \chi(x^{-(i+j-1)(t+1)})\) for \(i = 0, \ldots, t\) and \(j = 1, \ldots, 2k\), since \(|V(C)| \geq 2m + 3 = (2k + 1)(t + 1)|. All the remaining vertices of \(G\) will be coloured with distinct unused colours. Clearly \(\chi\) is a \(t\)-vertex distance colouring in \(G\).

Thus we can colour \((2k + 1)(t + 1)|\) vertices of \(C\) with only \(t + 1|\) colours. Hence we have

\[
\chi^{(t)}(G) \leq n - 2k(t + 1),
\]

a contradiction.

Now we give an example which show that conditions of Theorem 3 are sharp. Let \(d\) and \(k \geq 2\) be two positive integers. Consider two vertices \(u\) and \(v\) and \(d - 1\) cliques \(K_1, \ldots, K_{d-1}\) of order \(k\). We construct a graph \(G\) by joining each vertex of \(K_1\) with \(u\), each vertex of \(K_{d-1}\) with \(v\) and each vertex of \(K_i\) with each vertex of \(K_{i+1}\) for each \(i \in \{1, \ldots, d - 2\}\). The diameter of \(G\) is \(d\), the graph \(G\) is \(k\)-connected and the \(t\)-distance chromatic number is equal to

\[
\begin{cases}
 n - 1 & \text{if } t = d - 1, \\
 n - (d - t - 2)k - 2 & \text{if } t < d - 1.
\end{cases}
\]

For the following two examples the conditions of Theorem 3 give better upper bound on the \(t\)-distance chromatic number than the conditions of Theorem B and C. Let \(d\) be a positive integer. Consider two vertices \(u\), \(v\) and \(d - 1\) cliques \(K_1, \ldots, K_{d-1}\) of order 3. Construct a graph \(G\) by joining each vertex of \(K_1\) with \(u\), each vertex of \(K_{d-1}\) with \(v\). Now pair vertices of \(K_i\) with vertices of \(K_{i+1}\), for each \(i \in \{1, \ldots, d - 2\}\). The structure of \(G\) is shown in Figure 1.

![Figure 1](image_url)

The graph \(G\) is 3-connected, the diameter of \(G\) is \(d\) and \(G\) is planar, because the graph on the following picture (Figure 2) is isomorphic with \(G\).
From Theorem 3 we obtain $\chi(t)(G) \leq 3(t + 1)$ and from Theorem B we get $\chi(t)(G) \leq \frac{9}{2}(7^{t-1} - 1) + 6$. For $t \geq 2$ the upper bound of Theorem 3 is better.

For any positive integer d, consider two vertices u, v, and $d - 1$ cliques K_1, \ldots, K_{d-1}, such that K_1 and K_{d-1} are triangles and K_1, \ldots, K_{d-2} are alternatively cliques of orders 3 and 4. Construct a graph G in such a way that we join each vertex of K_1 with u, each vertex of K_{d-1} with v and we pair vertices of K_i with vertices of K_{i+1}, for all $i \in \{1, \ldots, d - 2\}$, in such a way that is shown in Figure 3.

This graph G is 3-connected, the diameter of G is d and G is planar, because the graph on the following picture (Figure 4) is isomorphic with G.
From Theorem 3 we get $\chi^{(t)}(G) \leq 3(t + 1) + 2 + \frac{d-1}{2}$, and, from Theorem B we obtain $\chi^{(t)}(G) \leq \frac{9}{2}((7)^{t-1} - 1) + 6$. Comparing these two values, the upper bound of Theorem 3 is asymptotically better for $t \geq 2$ and $d \ll 7^t$.

References

Received 15 September 2005
Revised 18 May 2007
Accepted 18 May 2007