PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 27 | 1 | 69-82
Tytuł artykułu

Nonsingular unicyclic mixed graphs with at most three eigenvalues greater than two

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper determines all nonsingular unicyclic mixed graphs on at least nine vertices with at most three Laplacian eigenvalues greater than two.
Wydawca
Rocznik
Tom
27
Numer
1
Strony
69-82
Opis fizyczny
Daty
wydano
2007
otrzymano
2005-09-23
poprawiono
2006-11-29
Twórcy
autor
  • School of Mathematics and Computational Science, Anhui University, Hefei, Anhui 230039, P.R. China
  • Department of Mathematics and Physics, Anhui University of Science and Technology, Anhui, Huainan 232001
autor
  • School of Mathematics and Computational Science, Anhui University, Hefei, Anhui 230039, P.R. China
Bibliografia
  • [1] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Generalized matrix tree theorem for mixed graphs, Linear and Multilinear Algebra 46 (1999) 299-312, doi: 10.1080/03081089908818623.
  • [2] R.B. Bapat, J.W. Grossman and D.M. Kulkarni, Edge version of the matrix tree theorem for trees, Linear and Multilinear Algebra 47 (2000) 217-229, doi: 10.1080/03081080008818646.
  • [3] Y.-Z. Fan, Largest eigenvalue of a unicyclic mixed graph, Applied Mathematics A Journal of Chinese Universities (English Series) 19 (2004) 140-148.
  • [4] Y.-Z. Fan, On the least eigenvalue of a unicyclic mixed graph, Linear and Multilinear Algebra, accepted for publication.
  • [5] Y.-Z. Fan, On spectral integral variations of mixed graphs, Linear Algebra Appl. 347 (2003) 307-316, doi: 10.1016/S0024-3795(03)00575-5.
  • [6] M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975) 619-633.
  • [7] R. Grone, R. Merris and V.S. Sunder, The Laplacian spectrum of a graph, SIAM J. Matrix Anal. Appl. 11 (1990) 218-238, doi: 10.1137/0611016.
  • [8] J.-M. Guo and S.-W. Tan, A relation between the matching number and the Laplacian spectrum of a graph, Linear Algebra Appl. 325 (2001) 71-74, doi: 10.1016/S0024-3795(00)00333-5.
  • [9] R.A. Horn and C.R. Johnson, Matrix analysis (Cambridge University Press, 1985).
  • [10] X.-D. Zhang and J.-S. Li, The Laplacian spectrum of a mixed graph, Linear Algebra Appl. 353 (2002) 11-20, doi: 10.1016/S0024-3795(01)00538-9.
  • [11] X.-D. Zhang and R. Luo, The Laplacian eigenvalues of a mixed graph, Linear Algebra Appl. 353 (2003) 109-119, doi: 10.1016/S0024-3795(02)00509-8.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-doi-10_7151_dmgt_1345
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.