ArticleOriginal scientific text

Title

Total edge irregularity strength of trees

Authors 1, 1

Affiliations

  1. Institute of Mathematics, P.J. Safarik University, Jesenna 5, SK-041 54 Košice, Slovak Republic

Abstract

A total edge-irregular k-labelling ξ:V(G)∪ E(G) → {1,2,...,k} of a graph G is a labelling of vertices and edges of G in such a way that for any different edges e and f their weights wt(e) and wt(f) are distinct. The weight wt(e) of an edge e = xy is the sum of the labels of vertices x and y and the label of the edge e. The minimum k for which a graph G has a total edge-irregular k-labelling is called the total edge irregularity strength of G, tes(G). In this paper we prove that for every tree T of maximum degree Δ on p vertices tes(T) = max{⎡(p+1)/3⎤,⎡(Δ+1)/2⎤}.

Keywords

graph labelling, tree, irregularity strength, total labellings, total edge irregularity strength

Bibliography

  1. M. Aigner and E. Triesch, Irregular assignment of trees and forests, SIAM J. Discrete Math. 3 (1990) 439-449, doi: 10.1137/0403038.
  2. D. Amar and O. Togni, Irregularity strength of trees, Discrete Math. 190 (1998) 15-38, doi: 10.1016/S0012-365X(98)00112-5.
  3. M. Bača, S. Jendrol' and M. Miller, On total edge irregular labelling of trees, (submitted).
  4. M. Bača, S. Jendrol', M. Miller and J. Ryan, On irregular total labellings, Discrete Math. 307 (2007) 1378–1388, doi: 10.1016/j.disc.2005.11.075.
  5. T. Bohman and D. Kravitz, On the irregularity strength of trees, J. Graph Theory 45 (2004) 241-254, doi: 10.1002/jgt.10158.
  6. L.A. Cammack, R.H. Schelp and G.C. Schrag, Irregularity strength of full d-ary trees, Congr. Numer. 81 (1991) 113-119.
  7. G. Chartrand, M.S. Jacobson, J. Lehel, O.R. Oellermann, S. Ruiz and F. Saba, Irregular networks, Congr. Numer. 64 (1988) 187-192.
  8. A. Frieze, R.J. Gould, M. Karoński and F. Pfender, On graph irregularity strength, J. Graph Theory 41 (2002) 120-137, doi: 10.1002/jgt.10056.
  9. J.A. Gallian, Graph labeling, The Electronic Jounal of Combinatorics, Dynamic Survey DS6 (October 19, 2003).
  10. J. Lehel, Facts and quests on degree irregular assignment, in: Graph Theory, Combin. Appl. vol. 2, Y. Alavi, G. Chartrand, O.R. Oellermann and A.J. Schwenk, eds., (John Wiley and Sons, Inc., 1991) 765-782.
  11. T. Nierhoff, A tight bound on the irregularity strength of graphs, SIAM J. Discrete Math. 13 (2000) 313-323, doi: 10.1137/S0895480196314291.
  12. W. D. Wallis, Magic Graphs (Birkhäuser Boston, 2001), doi: 10.1007/978-1-4612-0123-6.
Pages:
449-456
Main language of publication
English
Received
2005-09-30
Accepted
2006-01-31
Published
2006
Exact and natural sciences