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Abstract

We formulate general boundary conditions for a labelling of vertices
of a triangulation of a polyhedron by vectors to assure the existence
of a balanced simplex. The condition is not for each vertex separately,
but for a set of vertices of each boundary simplex. This allows us to
formulate a theorem, which is more general than the Sperner lemma
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1. Preliminaries

For n ∈ N, let N = {1, . . . , n} and N0 = {0, . . . , n}. By a polyhedron
we understand the convex hull of a finite set of Rn. Let P ⊂ Rn be a
polyhedron of dimension n. A face of the polyhedron P is the intersection
of P with some of its supporting hyperplanes. Denote the set of all k-
dimensional faces of the polyhedron P by Fk(P ) (k < n), the set of all
faces of the polyhedron P by F(P ) (hence F(P ) =

⋃n−1
k=0 Fk(P )) and the

set of all vertices of the polyhedron P by V (P ) (V (P ) = F0(P )). The
maximal dimension proper faces of the polyhedron P are called facets. For
a finite set A = {a0, . . . , am} ⊂ Rn a set coA = {α0a0 + · · ·+ αmam : ai ∈
A,

∑m
i=0 αi = 1, αi ≥ 0 for i ∈ {0, . . . , m}} is the convex hull of A, aff A =

{α0a0 + · · · + αmam :
∑m

i=0 αi = 1, ai ∈ A, αi ∈ R for i ∈ {0, . . . ,m}}
is the affine hull of A. And if for a finite set A = {a0, . . . , am} ⊂ Rn

(m ∈ {0, . . . , n}) the dimension of aff A is equal to m, then coA is called a
simplex (precisely an m-simplex). Let Trn be a finite family of n-simplexes
such that P =

⋃
δ∈Trn

δ and for any δ1, δ2 ∈ Trn, δ1 ∩ δ2 is the empty set or
their common face. A triangulation of the polyhedron P (we denote it by
Tr) is a family consisting of simplexes of Trn and all their faces. Let Trm

(m ∈ N0) denote the family of m-simplexes belonging to a triangulation Tr.
Hence Tr =

⋃n
i=0 Tri. Let V = Tr0 be the set of vertices of all simplexes

of Tr. Notice, that V =
⋃

δ∈Trn
V (δ). An (n − 1)-simplex of Trn−1 is a

boundary (n − 1)-simplex if it is a facet of exactly one n-simplex of Trn.
For a triangulation TrP of the polyhedron P and a triangulation TrQ of a
polyhedron Q a function f : V (TrP ) → V (TrQ) is a simplicial function if
for every σ ∈ TrP there exists δ ∈ TrQ such that f(V (σ)) = V (δ).

2. Main Result

We start with the following

Definition 2.1. Let σ ⊂ Rn be a simplex, l : V (σ) → Rn, b ∈ Rn and
Z ⊂ Rn. A simplex σ is b-balanced if the point b belongs to co (l(V (σ))) and
b-subbalanced with respect to Z, if the point b belongs to co (l(V (σ)) ∪ Z).
If Z = {x}, then we write b-subbalanced with respect to x instead of with
respect to {x}. For b = 0 we say balanced and subbalanced instead of
b-balanced and b-subbalanced, respectively.
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Notice that in the case Z is a polyhedron, a simplex σ is b-subbalanced with
respect to Z if and only if σ is b-subbalanced with respect to V (Z).

Lemma 2.2. Let P ⊂ Rn be a polyhedron of dimension n, Tr be a tri-
angulation of the polyhedron P , l : Tr0 → Rn, b ∈ Rn and x ∈ Rn. If
the triangulation Tr contains neither a b-balanced simplex of dimension less
than n nor a simplex of dimension less than n − 1 which is b-subbalanced
with respect to x, then the number of b-balanced simplexes in Tr is con-
gruent modulo 2 to the number of b-subbalanced with respect to x boundary
simplexes in Tr.

Proof. For this proof by a b-subbalanced simplex we understand a b-
subbalanced simplex with respect to x. Consider a graph G = (W,E) where
W is the set of b-balanced n-simplexes and b-subbalanced (n− 1)-simplexes
in Tr and there is an edge between two different simplexes σ1, σ2 ∈ W if
and only if there exists a simplex σ ∈ Tr containing σ1 and σ2 (in particular
σ = σ1). We will show that

degG(σ) =

{
1 if σ is a b-balanced or a boundary b-subbalanced simplex,

2 if σ is a b-subbalanced simplex not in the boundary.

Let σ be a b-balanced simplex of Tr. By our assumption σ is an n-dimen-
sional simplex. Let V (σ) = {v0, . . . , vn}, ui = l(vi) for i ∈ N0 and let
Ai = co {u0, . . . , ui−1, x, ui+1, . . . , un} for i ∈ N0. There is at least one
j ∈ N0 such that b ∈ Aj since b ∈ co {u0, . . . , un} ⊆

⋃n
i=0 Ai. If there

exists j, k ∈ N0, j < k such that b ∈ Aj and b ∈ Ak, then it is easy to
show that b ∈ co {x, u0, . . . , uj−1, uj+1, . . . , uk−1, uk+1, . . . , un}, so that the
simplex co {v0, . . . , vj−1, vj+1, . . . , vk−1, vk+1, . . . , vn} is b-subbalanced and
of dimension less than n− 1. This contradicts our assumption.

Now let σ be a b-subbalanced simplex in Tr of dimension n− 1 and let
σ1 be an n-simplex containing σ, V (σ) = {v1, . . . , vn}, V (σ1)\V (σ) = {v0},
ui = l(vi) for i ∈ N0, B0 = co {u0, u1, . . . , un}, Bi = co {x, u1, . . . , ui−1, u0,
ui+1, . . . , un} for i ∈ N0. Since b ∈ co {x, u1, . . . , un} ⊆

⋃n
i=0 Bi, then

there exists i ∈ N0 such that b ∈ Bi. If b ∈ B0, then σ1 is b-balanced
and σ and σ1 form an edge in G. If b ∈ Bi for some i ∈ N , then σ2 =
co {v0, . . . , vi−1, vi+1, . . . , vn} is b-subbalanced and σ and σ2 form an edge in
G. If b ∈ B0 ∩ Bj for some j ∈ N , then the simplex co {v1, . . . , vj−1, vj+1,
. . . , vn} is b-subbalanced of dimension less that n − 1, but this is im-
possible. If b ∈ Bj ∩ Bk for some j, k ∈ N , j < k, then the simplex
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co {v0, . . . , vj−1, vj+1, . . . , vk−1, vk+1, . . . , vn} is b-subbalanced of dimension
less that n− 1, but this is also impossible. In all cases, σ1 defines an adja-
cent edge to σ in G. Hence, if σ is a boundary simplex (it is a face of exactly
one n-simplex), then degG(σ) = 1 and if σ is not a boundary simplex (it is
a face of exactly two n-simplexes), then degG(σ) = 2.

Graph G has vertices of degree one and two only. Thus the number of
vertices of degree one is even and hence the number of b-balanced simplexes
in Tr is congruent modulo two to the number of b-subbalanced with respect
to x boundary simplexes in Tr.

Remark 2.3. Let S ⊂ Rn be a polyhedron, T̃ r be a triangulation of bdS
and p ∈ riS, then Tr = {co({p} ∪ σ) : σ ∈ T̃ r} ∪ T̃ r ∪ {p} is a triangulation
of the polyhedron S.

Definition 2.4. Two n-dimensional polyhedrons P and Q are dual to each
other through ψ if ψ : F(P ) → F(Q) is a one-to-one inclusion-reversing
mapping, i.e., F1 ⊂ F2 if and only if ψ(F1) ⊃ ψ(F2) for any F1, F2 ∈ F(P ).
Polyhedrons P and Q are dual to each other if there exists ψ : F(P ) → F(Q)
such that P and Q are dual to each other through ψ.

A simplex of any dimension is dual to itself and a 3-dimensional cube and
octahedron are dual to each other. For more examples and properties of dual
polyhedrons see Grunbaum [4], pp. 46–48. Notice that dimF +dim ψ(F ) =
n− 1 for any F ∈ F(P ).

Duality of polyhedrons may be defined in many ways (see e.g. Alexan-
drov [1], pp. 49):

Definition 2.5. Two n-dimensional polyhedrons P and Q are dual to each
other through φ, if φ : F0(P ) → Fn−1(Q) fulfils the following condition: for
v1, v2 ∈ F0(P ), co {v1, v2} is a face of P if and only if φ(v1) and φ(v2) have
a common (n− 2)-dimensional face.

Observe that both definitions are equivalent.

Theorem 2.6. Let P, Q ⊂ Rn be n-dimensional polyhedrons, dual to each
other through a mapping ψ, Tr be a triangulation of the polyhedron P , V =
Tr0, b ∈ riQ and l : V → Rn be a labelling. If for every G ∈ F(P ) and
every simplex σ ∈ Tr and σ ⊆ G, σ is not b-subbalanced with respect to the
set ψ(G), then there exists a b-balanced simplex in Tr.



Combinatorial Lemmas for Polyhedrons I 443

Proof. For n = 1 the boundary condition implies that the labels of two
vertices of P lie on opposite sides of the point b. Thus there is a vertex
v ∈ Tr0 such that l(v) = b or the number of b-balanced simplexes in Tr is
odd.

Consider the case n > 1. Assume that there is no b-balanced simplex in
Tr of dimension less than n. We show that there exists a b-balanced simplex
of dimension n in Tr.

We define a triangulation TrQ of bdQ. For every face H ∈ F1(Q) we
choose a point uH ∈ riH and apply Remark 2.3 to get a triangulation of
the face H. Then inductively for k = 2, . . . , n−1: for every face H ∈ Fk(Q)
we choose a point uH ∈ riH and apply Remark 2.3 to get a triangulation
of the face H. Finally we obtain a triangulation of bdQ.

Let V (P ) = {a0, . . . , ak} (k ≥ n). For i ∈ {0, . . . , k} and c ∈ riP , let
a′i = 2ai − c and P ′ = co {a′0, . . . , a′k}. Notice that P ⊂ P ′.

Now we define a triangulation of P ′, which is an extension of the tri-
angulation Tr of the polyhedron P . We define a triangulation of the set
P ′ \ ri P .

For every face F = co {ai(0), . . . , ai(l)} (defined by some: {ai(0), . . . , ai(l)}
⊂ V (P )) of the polyhedron P we denote F ′ = co {a′i(0), . . . , a

′
i(l)}. Every face

F of P has one-to-one correspondence to the face F ′ of P ′.
Let us denote FF ′ = co {F ∪ F ′}. Thus P ′ \ ri P =

⋃
F∈Fn−1(P ) FF ′.

For every face F1 ∈ F1(P ) we choose a point vF ′1 ∈ ri F ′
1. By Remark

2.3 we receive a triangulation of F ′
1. Then for every face F1 ∈ F1(P ) we

choose a point vF1F ′1 ∈ ri F1F
′
1. By Remark 2.3 we receive a triangulation of

F1F
′
1.
Now we apply the induction for k ∈ {2, . . . , n − 1}: for any face Fk ∈

Fk(P ) we choose a point vF ′k
∈ ri F ′

k and by Remark 2.3 we get a triangula-
tion of the face F ′

k. Analogously we choose a point vFkF ′k
∈ ri FkF

′
k and get

a triangulation of FkF
′
k.

Finally we obtain a triangulation of P ′ \ ri P and denote it by Tr′′.
Hence Tr′ = Tr ∪ Tr′′ is a triangulation of P ′, which is an extension of the
triangulation Tr on P .

Let V ′ = Tr′0. If v ∈ V ′ \ V , then v ∈ V (P ′) ∪ {vGG′ , vG′ : G ∈
Fk(P ), k ∈ {1, . . . , n− 1}}. For G′ ∈ F0(P ′) we also denote vG′ := G′.

Now, we define a labelling l′ : V ′ → Rn:

l′(v) =

{
l(v) for v ∈ V,

uψ(G) for v = vGG′ or v = vG′ .
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We prove that there is no b-balanced simplex in Tr′′. Consider an n-simplex
σ ∈ Tr′′. If σ∩P = ∅, then there is exactly one vertex v of σ, which is also a
vertex of P ′. Let v = a′j ∈ V (P ′) (j ∈ N) and thus l′(V (σ)) ⊂ ψ(aj), where
ψ(aj) is a facet of Q so σ is not b-balanced. Now consider the case σ∩P 6= ∅:
let τ = σ ∩ P , Gτ be the smallest face of P (in the sense of inclusion)
containing τ . Let v ∈ V (σ) \ V (τ), thus v = vG′ or v = vGG′ for some
G ∈ F(P ). Notice that Gτ ⊆ G and thus ψ(Gτ ) ⊇ ψ(G). From definition
of TrQ we have uH ∈ H for any H ∈ F(Q) and from definition of labelling
l′ we have l′(v) = uψ(G) ∈ ψ(G) ⊆ ψ(Gτ ). Thus l′(V (σ) \ V (τ)) ⊆ ψ(Gτ )
and l′(V (σ)) = l′((V (σ) \ V (τ)) ∪ V (τ)) = l′((V (σ) \ V (τ))) ∪ l′(V (τ)) ⊆
ψ(Gτ ) ∪ l′(V (τ)) = ψ(Gτ ) ∪ l(V (τ)).

From the assumption b /∈ co (l(V (τ))∪ψ(Gτ )). Therefore b /∈ co l′(V (σ))
and σ is not a b-balanced simplex.

Let σ be an (n− 1)-simplex, V (σ) = {v1, . . . , vn}, v′i = 2b− vi (i ∈ N),
C(σ) = cone({v′1, . . . , v′n}, b). An (n − 1)-simplex σ is b-subbalanced with
respect to x if and only if x ∈ C(σ). The set C(σ) is an (n− 1)-dimensional
set and the union

⋃
σ∈Tr′n−1,σ⊂bd P ′ C(σ) is also an (n− 1)-dimensional set.

Hence, we can choose x ∈ Rn, x 6= b in such a way that Tr′ does not
contain a b-subbalanced simplex with respect to x of dimension smaller that
n− 1. Consider a line going through x and b. This line meets bdQ in two
points. By x′ we denote the common point of this line and bdQ such that
b ∈ co {x, x′} and by σQ ∈ TrQ we denote the (n−1)-dimensional boundary
simplex containing x′. The function l′ restricted to the set bdP ′ ∩ V ′ is
a one-to-one simplicial function. The simplex σP := co l′−1(V (σQ)) is b-
subbalanced with respect to x and it is the only such simplex on bdP .

Now, from Lemma 2.2 it follows that the number of b-balanced simplexes
in Tr′ is odd. Since Tr′ = Tr ∪ Tr′′ and there is no b-balanced simplex in
Tr′′, there exists b-balanced simplex in Tr.

3. Corollaries and Applications

In this section we present corollaries to Theorem 2.6 in order to show the
strength of this theorem. First we apply Theorem 2.6 to the simplex:

Corollary 3.1. Let P = co {d0, . . . , dn} ⊂ Rn be an n-dimensional simplex,
mFi =

∑
j 6=i

dj

n be the gravity center of a facet Fi = co {d0, . . . , di−1, di+1,

. . . , dn}, mP =
∑n

j=0
dj

n+1 be the gravity center of P , Tr be a triangulation
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of the simplex P , V = Tr0 and l : V → Rn be a labelling. If for every
face F = co {di : i ∈ M} and every simplex σ ⊂ F , σ ∈ Tr, σ is not
mP -subbalanced with respect to the set {mFi : i ∈ M}, then there exists an
mP -balanced simplex in Tr.

Corollary 3.1 is more general than the Sperner lemma [12] and the Shapley
lemma (Lemma 7.2 in [11]).

Corollary 3.2. Let P = co {d0, . . . , dn} ⊂ Rn be an n-dimensional simplex,
mP =

∑n
j=0

dj

n+1 be the gravity center of P , Tr be a triangulation of the
simplex P , V = Tr0 and l : V → Rn be a labelling. If for every face
F = co {di : i ∈ M} (M ⊂ N0) and every simplex σ ⊂ F , σ ∈ Tr, σ is not
mP -subbalanced with respect to the set {di : i /∈ M}, then there exists an
mP -balanced simplex in Tr.

Corollary 3.2 is more general than the Scarf lemma ([10]; see also Theorem
3.4 in [9]) and the Garcia lemma ([3], see also Theorem 3.6 in [9]).

The next result is on an n-dimensional cube. Let In = {(x1, . . . , xn) ∈
Rn : −1 ≤ xi ≤ 1, i ∈ N} be an n-dimensional cube and for k ∈ N ,
i1, . . . , ik ∈ N , i1 < i2 < · · · < ik, si1 , . . . , sik ∈ {−1, 1} let I(si1i1, . . . , sikik)
= {(x1, . . . , xn) ∈ In : xij = sij , j ∈ {1, . . . , k}} be an (n − k)-dimensional
face of In.

Corollary 3.3. Let Tr be a triangulation of the cube In, V = Tr0 and
l : V → Rn be a labelling. If for all k ∈ N , i1, . . . , ik ∈ N , i1 < i2 < · · · < ik,
si1 , . . . , sik ∈ {−1, 1} and every simplex σ ∈ Tr and σ ⊆ I(si1i1, . . . , sikik),
σ is not subbalanced with respect to the set {sijeij : j ∈ {1, . . . k}}, then
there exists a balanced simplex in Tr.

Proof. It follows directly from Theorem 2.6 for P = In, Q = co{ei,−ei :
i ∈ N} and ψ({sijeij : j ∈ {1, . . . , k}}) = co {sijeij : j ∈ {1, . . . , k}} for all
k ∈ N , i1, . . . , ik ∈ N , i1 < i2 < · · · < ik, si1 , . . . , sik ∈ {−1, 1}.
Corollary 3.3 is more general than the Freund lemma (Lemma 1 in [2], see
also Lemma 3.7 in [9]). Our next result is a generalization of the Poincaré-
Miranda theorem [8]:

Theorem 3.4. Let f : In → Rn be a continuous function, such that for all
k ∈ N , i1, . . . , ik ∈ N , i1 < i2 < · · · < ik, si1 , . . . , sik ∈ {−1, 1}
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f(I(si1i1, . . . , sikik)) ∩ cone{−sijeij : j ∈ {1, . . . , k}} = ∅,
then there exists x ∈ In such that f(x) = 0.

Proof. Consider a sequence of triangulations Trm of In (m ∈ N) with
mesh tending to zero, when m tends to infinity. Let V m = V (Trm) and
lm = f |V m . We show that the labelling lm fulfils the condition of Corollary
3.3. Let I(si1i1, . . . , sikik) be a face of In for k ∈ N , i1, . . . , ik ∈ N , i1 < i2 <
· · · < ik, si1 , . . . , sik ∈ {−1, 1}. Take σm ⊆ I(si1i1, . . . , sikik). Because f is
continuous and for sufficiently large m the mesh of Trm is small enough, the
condition f(I(si1i1, . . . , sikik)) ∩ cone{−sijeij : j ∈ {1, . . . , k}} = ∅ implies
lm(V (σm)) ∩ cone{−sijeij : j ∈ {1, . . . , k}} = ∅. This is equivalent to the
condition that σm is not subbalanced with respect to the set {sijeij : j ∈
{1, . . . , k}}. Corollary 3.3 implies that there exists a balanced simplex in
Trm. Now, if the mesh of Trm tends to zero, the sequence of simplexes σm

tends to a point z. But each σm is a balanced simplex so we have f(z) = 0.

Theorem 2.6 is more general than our previous result:

Corollary 3.5 (Theorem 3.4 in [6]). Let P ⊂ Rn be a polyhedron of dimen-
sion n, Tr be a triangulation of the polyhedron P , V = Tr0, b ∈ ri P and
l : V → Rn be a labelling. If for every facet F of the polyhedron P there ex-
ists an (n−1)-dimensional hyperplane hF

b containing the point b and disjoint
with F such that l(V ∩F ) ⊂ HF

b , where HF
b is an open halfspace containing

F such that hF
b is in its boundary, then there exists a b-balanced n-simplex

in the triangulation Tr.

Proof. For every polyhedron P and any point b ∈ P there exists a dual
polyhedron Q such that every face of Q is perpendicular to the ray issu-
ing from b through the vertices of P and whose vertices lie on the rays
issuing from b and perpendicular to the faces of P (for the proof see [1],
pp. 45). Hence P,Q and l fulfil the condition of Theorem 2.6 and we get our
corollary.

For every n-dimensional polyhedron P ⊂ Rn and any point x0 ∈ riP there
exist vectors ai (i ∈ I ⊂ N), such that P = {x ∈ Rn : aix ≤ 1 + aix0, i ∈ I}.
Let carB = {i ∈ I : aix = 1 + aix0 for all x ∈ B} for B ⊂ P .

Two theorems below, proved by van der Laan, Talman and Yang, follow
also from our Theorem 2.6:
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Corollary 3.6 (Theorem 4.1 in [9]). Let P = {x ∈ Rn : aix ≤ 1 + aix0,
i ∈ I} ⊂ Rn be an n-dimensional polyhedron, Q = co {aj ∈ Rn : i ∈ I},
b ∈ riQ, Tr be a triangulation of P , V = Tr0 and l : V → Rn be a labelling.
There exists a simplex σ ∈ Tr such that b ∈ co (l(V (σ)) ∪ {ai : i ∈ carσ}).
Proof. For a polyhedron P = {x ∈ Rn : aix ≤ 1 + aix0, i ∈ I} ⊂ Rn

the polyhedron Q = co {aj ∈ Rn : i ∈ I} is dual to P through a mapping
ψ : F(P ) → F(Q) defined by ψ(F ) = co {ai ∈ Rn : i ∈ carF}, (for the proof
see Grunbaum [4] pp. 46–49).

Notice that for any boundary simplex σ ∈ Tr the condition b ∈
co (l(V (σ)) ∪ {ai : i ∈ carσ}) says that σ is b-subbalanced with respect
co {ai ∈ Rn : i ∈ carσ}. Hence, if there is no boundary simplex σ such that
b ∈ co (l(V (σ)) ∪ {ai : i ∈ carσ}), then the assumptions of Theorem 2.6 are
satisfied and we get the thesis.

For any k-dimensional polyhedron P ⊂ Rn there exists m vectors ai ∈ Rn,
m real numbers αi ∈ R (m > k, i ∈ I ⊂ N), and n − k vectors dh ∈ Rn,
n − k real numbers δh ∈ R (h ∈ Nk ⊂ N) such that P = {x ∈ Rn : aix ≤
αi for i ∈ I, dhx = δh for h ∈ Nk}.

Corollary 3.7 (Theorem 3.1 in [9]). Let P = {x ∈ Rn : aix ≤ αi for i ∈
I, dhx = δh for h ∈ Nk} be a k-dimensional polyhedron, W = aff {dh :
h ∈ Nk}, W ∗ = {x ∈ Rn : xy = 0 for all y ∈ W}, Tr a triangulation of
P , l : V → Rn be a labelling such that (co l(V )) ∩ W = {0}. If for every
F ∈ F(P ) and every simplex σ ∈ Tr, σ ⊆ F the intersection (co l(V (σ))) ∩
(cone(0, {ai : i ∈ car (F )})+W ) is empty or contains the point 0 ∈ Rn, then
there exists a balanced simplex in Tr.

Proof. Without loss of generality we may assume that the vectors ai for
i ∈ I are parallel to the hyperplane W ∗. We can consider projection of
the polyhedron P , labels l(V ) and vectors ai for i ∈ I on the hyperplane
W ∗ parallel to the hyperplane W . Hence, we reduce this theorem to the
full-dimensional case. Analogously vectors ai (i ∈ I) can be scaled in such a
way that Q = co {ai : i ∈ I} is a polyhedron dual to P through a mapping
ψ : F(P ) → F(Q) defined by ψ(F ) = co {ai ∈ Rn : i ∈ carF}. If there exists
a simplex σ such that co l(V (σ)) contains 0 ∈ Rn, then σ is a balanced sim-
plex. If for any F ∈ F(P ) and any simplex σ ∈ Tr, σ ⊆ F the intersection
co l(V (σ)) ∩ cone(0, {ai : i ∈ car (F )}) is empty, then σ is not a subbal-
anced simplex with respect to the set ψ(F ) and by Theorem 2.6 we get our
theorem.
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